dreamteamrealty.ru

Самодельный драйвер для светодиодов на 12 вольт. Бесплатный самодельный драйвер для питания светодиодов из электронного преобразователя энергосберегающих ламп. Напряжения питания светодиодов

Работали максимально ярко и эффективно, используются специальные модули - драйверы. Собрать самостоятельно схему драйвера для светодиодов сможет каждый, если, конечно, имеются познания в электротехнике. Смысл работы прибора - преобразовать переменное напряжение, протекающее в сети, в постоянное (пониженное). Но прежде чем приступать к сборке, нужно определиться с тем, какие требования к устройству предъявляются - проанализируйте характеристики и виды приборов.

Для чего нужны драйверы?

Основное назначение драйверов - это стабилизация тока, который проходит через светодиод. Причем нужно учесть, что сила тока, который проходит по кристаллу полупроводника, должна быть точно такой же, как и у светодиода по паспорту. Благодаря этому обеспечивается устойчивое освещение. Кристалл в светодиоде намного дольше прослужит. Чтобы узнать напряжение, необходимое для питания светодиодов, нужно воспользоваться вольт-амперной характеристикой. Это график, показывающий зависимость между напряжением питания и током.

Если планируется проводить освещение светодиодными лампами жилого или офисного помещения, то драйвер должен питаться от бытовой сети переменного тока с напряжением 220 В. Если же светодиоды используются в автомобильной или мототехнике, нужно использовать драйверы, питающиеся от постоянного напряжения, значение 9-36 В. В некоторых случаях (если светодиодная лампа небольшой мощности и питается от сети 220 В) допускается убрать схему драйвера светодиода. От сети если запитано устройство, достаточно включить в схему постоянный резистор.

Параметры драйверов

Прежде чем приобрести устройство или самостоятельно его изготовить, нужно ознакомиться с тем, какие у него имеются основные характеристики:

  1. Номинальный ток потребления.
  2. Мощность.
  3. Выходное напряжение.

Напряжение на выходе преобразователя напрямую зависит от того, какой выбран способ подключения источника света, числа светодиодов. Ток имеет прямую зависимость от яркости и мощности элементов.

Преобразователь должен обеспечивать ток, при котором светодиоды будут работать с одинаковой яркостью. На PT4115 схема драйвера светодиодов реализуется довольно просто - это самый распространенный преобразователь напряжения для использования с LED-элементами. Изготовить прибор на его основе можно буквально «на коленке».

Мощность драйвера

Мощность прибора - это самая важная характеристика. Чем мощнее драйвер, тем большее число светодиодов можно подключить к нему (конечно, придется проводить простые расчеты). Обязательное условие - мощность драйвера должна быть больше, чем у всех светодиодов в сумме. Выражается это такой формулой:

Р = Р(св) х N,

где Р, Вт - мощность драйвера;

Р(св), Вт - мощность одного светодиода;

N - количество светодиодов.

Например, при сборке схемы драйвера для светодиода 10W вы можете смело подключать в качестве нагрузки LED-элементы мощностью до 10 Вт. Обязательно нужно иметь небольшой запас по мощности - примерно 25%. Поэтому, если планируется подключение светодиода 10 Вт, драйвер должен обеспечивать мощность не менее 12,5-13 Вт.

Цвета светодиодов

Обязательно нужно учитывать то, какой цвет испускает светодиод. От этого зависит то, какое падение напряжения будет у них при одинаковой силе тока. Например, при токе питания 0,35 А, падение напряжения у красных LED-элементов примерно 1,9-2,4 В. Мощность в среднем 0,75 Вт. Аналогичная модель с зеленым цветом будет уже иметь падение в интервале 3,3-3,9 В, а мощность 1,25 Вт. Поэтому, если вы применяете схему драйвера светодиода 220В с преобразованием в 12 В, к нему можно подключить максимум 9 элементов с зеленым цветом или 16 с красным.

Типы драйверов

Всего можно выделить два типа драйверов для светодиодов:

  1. Импульсные. С помощью таких устройств создаются в выходной части устройства высокочастотные импульсы. Функционирование основывается на принципах ШИМ-модуляции. Среднее значение тока зависит от коэффициента заполнения (отношения длительности одного импульса к частоте его повторения). Ток на выходе меняется за счет того, что коэффициент заполнения колеблется в интервале 10-80%, а частота остается постоянной.
  2. Линейные - типовая схема и структура выполнены в виде генератора тока на транзисторах с р-каналом. С их помощью можно обеспечить максимально плавную стабилизацию питающего тока в случае, если напряжение на входе неустойчиво. Отличаются дешевизной, но у них малая эффективность. При работе выделяется большое количество тепла, поэтому можно использовать только для маломощных светодиодов.

Импульсные получили большее распространение, так как у них КПД намного выше (может достигать 95%). Устройства компактные, диапазон входного напряжения достаточно широкий. Но есть один большой недостаток - высокое влияние различного рода электромагнитных помех.

На что обратить внимание при покупке?

Покупку драйвера обязательно нужно совершать при выборе светодиодов. На PT4115 схема драйвера светодиодов позволяет обеспечить нормальное функционирование Устройства, использующие ШИМ-модуляторы, построенные по схемам с одной микросхемой, применяются по большей части в автомобильной технике. В частности, для подключения подсветки и ламп головного освещения. Но качество у таких простейших приборов довольно низкое - для использования в бытовых системах они не годятся.

Диммируемый драйвер

Практически все конструкции преобразователей позволяют регулировать яркость свечения LED-элементов. С помощью таких устройств можно выполнять следующие действия:

  1. Уменьшать интенсивность освещенности днем.
  2. Скрывать или же подчеркивать определенные элементы интерьера.
  3. Зонировать помещение.

Благодаря этим качествам можно существенно сэкономить на электроэнергии, увеличить ресурс элементов.

Разновидности диммируемых драйверов

Типы диммируемых драйверов:

  1. Подключаются между БП и источником света. Они позволяют управлять энергией, которая поступает на LED-элементы. В основе конструкции находятся ШИМ-модуляторы с микроконтроллерным управлением. Вся энергия идет к светодиодам импульсами. От длины импульсов напрямую зависит энергия, которая поступит на светодиоды. Такие конструкции драйверов применяются в основном для работы модулей со стабилизированным питанием. Например, для лент или бегущих строк.
  2. Второй тип устройств позволяет проводить управление блоком питания. Управление производится при помощи ШИМ-модулятора. Также изменяется величина тока, который протекает через светодиоды. Как правило, такие конструкции применяются для питания тех устройств, которым необходим стабилизированный ток.

Нужно обязательно учесть тот факт, что ШИМ-регулирование плохо влияет на зрение. Лучше всего использовать схемы драйверов для питания светодиодов, в которых регулируется величина тока. Но вот один нюанс - в зависимости от величины тока свечение будет различным. При низком значении элементы будут излучать свет с желтым оттенком, при увеличении - с синеватым.

Какую микросхему выбрать?

Если нет желания искать готовое устройство, можно сделать его самостоятельно. Причем произвести расчет под конкретные светодиоды. Микросхем для изготовления драйверов довольно много. Вам потребуется только умение читать электрические схемы и работать с паяльником. Для простейших устройств (мощностью до 3 Вт) можно использовать микросхему PT4115. Она дешевая, и достать очень просто. Характеристики элемента такие:

  1. Напряжение питания - 6-30 В.
  2. Выходной ток - 1,2 А.
  3. Допустимая погрешность при стабилизации тока - не более 5%.
  4. Защита от отключения нагрузки.
  5. Выводы для диммирования.
  6. КПД - 97%.

Обозначение выводов микросхемы:

  1. SW - подключение выходного коммутатора.
  2. GND - отрицательный вывод источников питания и сигнала.
  3. DIM - регулятор яркости.
  4. CSN - датчик входного тока.
  5. VIN - положительный вывод, соединяемый с источником питания.

Варианты схем драйверов

Варианты исполнения устройств:

  1. Если имеется источник питания с постоянным напряжением 6-30 В.
  2. Питание от переменного напряжения 12-18 В. В схему вводится диодный мост и электролитический конденсатор. По сути, «классическая» схема мостового выпрямителя с отсечением переменной составляющей.

Нужно отметить тот факт, что электролитический конденсатор не сглаживает пульсации напряжения, а позволяет избавиться от переменной составляющей в нем. В схемах замещения (по теореме Кирхгофа) электролитический конденсатор в цепи переменного тока является проводником. А вот в цепи постоянного тока он заменяется разрывом (нет никакого элемента).

Собрать схему драйвера светодиодов 220 своими руками можно только в том случае, если использовать дополнительный блок питания. В нем обязательно задействован трансформатор, которым понижается напряжение до необходимого значения в 12-18 В. Учтите, что нельзя подключать драйверы к светодиодам без электролитического конденсатора в блоке питания. При необходимости установки индуктивности необходимо произвести ее расчет. Обычно величина составляет 70-220 мкГн.

Процесс сборки

Все элементы, которые используются в схеме, нужно подбирать, опираясь на даташит (техническую документацию). Обычно в нем приводятся даже практические схемы использования устройств. Обязательно использовать в схеме выпрямителя низкоимпедансные конденсаторы (значение ESR должно быть низким). Применение иных аналогов снижает эффективность регулятора. Емкость должна быть не менее 4,7 мкФ (в случае использования схемы с постоянным током) и от 100 мкФ (для работы в цепи переменного тока).

Собрать по схеме драйвер для светодиодов своими руками можно буквально за несколько минут, потребуется только наличие элементов. Но нужно знать и особенности проведения монтажа. Катушку индуктивности желательно располагать возле вывода микросхемы SW. Изготовить ее можно самостоятельно, для этого необходимо всего несколько элементов:

  1. Ферритовое кольцо - можно использовать со старых блоков питания компьютеров.
  2. Провод типа ПЭЛ-0,35 в лаковой изоляции.

Старайтесь все элементы располагать максимально близко к микросхеме, это позволит исключить появление помех. Никогда не проводите соединения элементов при помощи длинных проводов. Они не только создают множество помех, но и способны принимать их. В результате микросхема, неустойчивая к этим помехам, будет работать неправильно, нарушится регулировка тока.

Вариант компоновки

Разместить все элементы можно в корпусе от старой лампы дневного света. В ней уже все имеется - корпус, патрон, плата (которую можно повторно использовать). Внутри расположить все элементы блока питания и микросхему можно без особого труда. А с внешней стороны установить светодиод, который планируете запитывать от устройства. Схемы драйверов для светодиодов 220 В можно использовать практически любые, главное - понизить напряжение. Сделать это легко простейшим трансформатором.

Монтажную плату желательно использовать новую. А лучше вообще обойтись без нее. Конструкция очень простая, допустимо применить навесной монтаж. Обязательно удостоверьтесь в том, что на выходе выпрямителя напряжение в допустимых пределах, в противном случае микросхема сгорит. После сборки и подключения произведите замер потребляемого тока. Учтите, что в случае снижения тока питания увеличится ресурс светодиодного элемента.

Тщательно выбирайте схему драйвера для питания светодиодов, рассчитывайте каждый компонент конструкции - от этого зависит срок службы и надежность. При правильном подборе драйверов характеристики светодиодов останутся максимально высокими, а ресурс не пострадает. Схемы драйверов для мощных светодиодов отличаются тем, что в них большее число элементов. Зачастую применяется ШИМ-модуляция, но в домашних условиях, что называется, «на коленке», такие устройства уже сложно собрать.

Ранее на нашем сайте уже проскакивала информация о том, (в своем приоритете) используются в LED источниках света. Конечно, есть хорошие, есть плохие, есть дорогие и очень дешевые. Если Вы живете в большом городе, то проще купить в каком-нибудь розничном магазине. Это и быстро и просто. Но что делать, если Вы находитесь в глубинке. Старый LED дайвер сгорел, а нового купить негде?

У большинства появится ответ – Интернет Вам в помощь! И будут правы. Но, как правило, посылки из столицы в глубинку идут до 2 недель. Это долго. Нам же хочется всегда побыстрее.

Основываясь на этом мы и решили показать, каким образом можно легко и быстро самостоятельно создать светодиодный драйвер.

Наш драйвер способен запитать до 40 Вт диодного света). С выходным напряжением до 37 В и током до 1,5 А.

Для драйвера нам понадобятся:

  1. Резистор 220 Ом
  2. Подстроечный резистор от 0 до 2,5 кОм
  3. Монтажная плата
  4. И обычная схемка LM Максимально, на что она способна – это 1,5А

Ниже Вы можете видеть схемку, нарисованную на коленке. Из нее все понятно без слов. Что и куда «тыкать». Если что-то не понятно, то задавайте вопросы. Поможем.

Драйвер абсолютно рабочий. Проверено.

Ну и теперь по порядку, что необходимо сделать:


Не забываем припаять питающие и отходящие провода, после чего светодиодный драйвер, собранный своими руками готов к использованию.

Статья посвящена ремонту драйверов светодиодных прожекторов. Напоминаю, что недавно у меня уже была статья по , рекомендую ознакомиться.

Статья по схемам светодиодных драйверов и их ремонту

Саша, здравствуйте.

В частности, по теме освещения - схемы двух модулей от автомобильных LED прожекторов с напряжением на 12В. Заодно, хочу задать Вам и читателям несколько вопросов по комплектующим этих модулей.

Я не силён писать статьи, об опыте ремонта каких-то электронных устройств (это, в основном, – силовая электроника) пишу только на форумах, отвечая на вопросы участников форума. Там же делюсь схемами, срисованными мною с устройств, которые мне приходилось ремонтировать. Надеюсь, схемы светодиодных драйверов, нарисованные мною, помогут читателям в ремонте.

На схемы этих двух LED драйверов, обратил внимание потому, что они просты, как самокат, и их очень легко повторить своими руками. Если с драйвером модуля YF-053CREE-40W, вопросов не возникло, то по топологии схемы второго модуля LED прожектора TH-T0440C, их несколько.

Схема LED драйвера светодиодного модуля YF-053CREE-40W

Внешний вид этого прожектора приведен вначале статьи, а вот так этот светильник выглядит сзади, виден радиатор:

Светодиодные модули этого прожектора выглядят так:

Опыт по срисовыванию схем с реальных сложных устройств у меня имеется большой, поэтому схему этого драйвера срисовал легко, вот она:

YF-053 CREE Драйвер LED прожектора, схема электрическая

Принципиальная схема LED драйвера TH-T0440C

Как выглядит этот модуль (это автомобильная светодиодная фара):

Электрическая схема:

В этой схеме больше непонятного, чем в первой.

Во-первых, из-за необычной схемы включения ШИМ-контроллера, мне не удалось эту микросхему идентифицировать. По некоторым подключениям она похожа на AL9110, но тогда непонятно, как она работает без подключения к схеме её выводов Vin (1), Vcc (Vdd) (6) и LD (7) ?

Также возникает вопрос по подключению MOSFET-а Q2 и всей его обвязки. Он ведь он имеет N-канал, а подключён в обратной полярности. При таком подключении работает только его антипараллельный диод, а сам транзистор и вся его “свита”, совершенно бесполезны. Достаточно было вместо него поставить мощный диод Шоттки, или “баян” из более мелких.

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Светодиоды для LED драйверов

Я не смог определиться со светодиодами. Они в обоих модулях одинаковые, хотя их производители разные. На светодиодах нет никаких надписей (с обратной стороны – тоже). Искал у разных продавцов по строке “Сверхяркие светодиоды для LED-прожекторов и LED-люстр”. Там продают кучу разных светодиодов, но все они, или без линз, или с линзами на 60º, 90º и 120º .

Похожих по виду на мои, не встретил ни разу.

Собственно, у обоих модулей одна неисправность – частичная, или полная деградация кристаллов светодиодов. Думаю, причина – максимальный ток с драйверов, установленный производителями (китаёзы) в целях маркетинга. Мол, смотрите, какие яркие наши люстры. А то, что они светят от силы часов 10, их не волнует.

Если возникнут претензии от покупателей, они всегда могут ответить, что прожекторы вышли из строя от тряски, ведь такие “люстры” в основном покупают владельцы джипов, а они ездят не только по шоссе.

Если удастся найти светодиоды, буду уменьшать ток драйвера до тех пор, пока не станет заметно уменьшаться яркость светодиодов.

Светодиоды лучше искать на АлиЭкспресс, там большой выбор. Но это рулетка, как повезёт.

Даташиты (техническая информация) на некоторые мощные светодиоды будут в конце статьи.

Думаю, главное для долговечной работы светодиодов – не гнаться за яркостью, а устанавливать оптимальный ток работы.

До связи, Сергей.

P.S. электроникой “болею” с 1970 г., когда на уроке физики собрал свой первый детекторный приёмник.

Ещё схемы драйверов

Ниже размещу немного информации по схемам и по ремонту от меня (автора блога СамЭлектрик.ру)

Светодиодный прожектор Навигатор, рассмотренный в статье (ссылку уже давал в начале статьи).

Схема стандартная, выходной ток меняется за счет номиналов элементов обвязки и мощности трансформатора:

LED Driver MT7930 Typical. Схема электрическая принципиальная типовая для светодиодного прожектора

Схема взята из даташита на эту микросхему, вот он:

/ Описание, типовая схема включения и параметры микросхемы для драйверов светодиодных модулей и матриц., pdf, 661.17 kB, скачан:1764 раз./

В даташите подробно расписано, что и как надо поменять, чтобы получить нужный выходной ток драйвера.

Вот более развернутая схема драйвера, приближенная к реальности:

Видите слева от схемы формулу? Она показывает, от чего зависит выходной ток. Прежде всего, от резистора Rs, который стоит в истоке транзистора и состоит из трех параллельных резисторов. Эти резисторы, а заодно и транзистор выгорают.

Имея схему, можно приниматься за ремонт драйвера.

Но и без схемы можно сразу сказать, что в первую очередь надо обратить внимание на:

  • входные цепи,
  • диодный мост,
  • электролиты,
  • силовой транзистор,
  • пайку.

Сам я именно подобные драйвера ремонтировал несколько раз. Иногда помогала только полная замена микросхемы, транзистора и почти всей обвязки. Это очень трудозатратно и экономически неоправданно. Как правило – это гораздо проще и дешевле – покупал и устанавливал новый Led Driver, либо отказывался от ремонта вообще.

Скачать и купить

Вот даташиты (техническая информация) на некоторые мощные светодиоды:

/ Техническая информация по мощному светодиоду для фар и прожекторов, pdf, 689.35 kB, скачан:774 раз./

/ Техническая информация по мощному светодиоду для фар и прожекторов, pdf, 1.82 MB, скачан:974 раз./

Особая благодарность тем, кто схемы реальных светодиодных драйверов, для коллекции. Я опубликую их в этой статье.

Мощные светодиоды 1 Вт и выше сейчас совсем недорогие. Я уверен, что многие из вас используют такие светодиоды в своих проектах.

Однако питание таких светодиодов по-прежнему не такое простое и требует специальных драйверов. Готовые драйвера удобны, но они не регулируемые, или зачастую их возможности излишни. Даже возможности моего собственного универсального светодиодного драйвера могут быть лишними. Некоторые проекты требуют самого простого драйвера, возможности которого хватит.

Poorman"s Buck – простой светодиодный драйвер постоянного тока.

Этот светодиодный драйвер построен без микроконтроллера или специализированной микросхемы. Все используемые детали легкодоступные.

Хотя драйвер задумывался как самый простой, я добавил функцию регулировки тока. Ток может подстраиваться регулятором, установленным на плате или ШИМ сигналом. Это делает драйвер идеальным для использования с Arduino или другими управляющими устройствами - вы можете управлять мощными светодиодами микроконтроллером, просто отправляя ШИМ сигнал. С Arduino вы можете просто подавать сигнал с "AnalogWrite ()" для управления яркостью мощных светодиодов.

Особенности драйвера

Работа по схеме buck-конвертера (импульсного понижающего (step-down) преобразователя)
Широкий диапазон выходных напряжения от 5 до 24В. Питание от батарей и адаптеров переменного тока.
Настраиваемый выходной ток до 1А.
Метод контроля тока "цикл за циклом"
До 18Вт выходной мощности (при напряжении питания 24В и шестью 3 Вт светодиодами)
Контроль тока при помощи потенциометра.
Контроль тока может быть использован как встроенный диммер.
Защита от короткого замыкания на выходе.
Возможность управления ШИМ сигналом.
Маленькие размеры - всего 1х1,5х0,5 дюйма(без учета ручки потенциометра).

Схема светодиодного драйвера

Схема построена на очень распространенном интегральном двойном компараторе LM393, включённым по схеме понижающего преобразователя.

Индикатор выходного тока сделан на R10 и R11. В результате напряжение пропорционально току в соответствии с законом Ома. Это напряжение сравнивается с опорным напряжением на компараторе. Когда Q3 открывается, ток течёт через L1, светодиоды и резисторы R10 и R11. Индуктор не позволяют току повышаться резко, поэтому ток возрастает постепенно. Когда напряжение на резисторе повышается, напряжение на инвертирующем входе компаратора также увеличивается. Когда оно становится выше опорного напряжения, Q3 закрывается и ток через него перестаёт течь.

Поскольку индуктор "заряжен", в схеме остаётся ток. Он течет через диод Шоттки D3 и питает светодиоды. Постепенно этот ток затухает и цикл начинается снова. Этот метод контроля тока называется "цикл за циклом". Также этот метод имеет защиту от короткого замыкания на выходе.
Весь этот цикл происходит очень быстро - более чем 500 000 раз в секунду. Частота этих циклов изменяется в зависимости от напряжения питания, прямого падения напряжения на светодиоде и тока.

Опорное напряжение создается обычным диодом. Прямое падение напряжения на диоде составляет около 0,7В и после диода напряжение остаётся постоянным. Затем это напряжение регулируется потенциометром VR1 для контроля выходного тока. При помощи потенциометра выходной ток можно изменять в диапазоне около 11:01 или от 100% до 9%. Это очень удобно. Иногда после установки светодиодов они оказываются намного ярче, чем ожидалось. Вы можете просто уменьшить ток для получения необходимой вам яркости. Вы можете заменить потенциометр двумя обычными резисторами, если вы хотите установить яркость светодиодов один раз.

Преимущество такого регулятора в том, что он контролирует выходной ток без "сжигания" избыточной энергии. Энергии от источника питания берётся только столько, сколько нужно, чтобы получить необходимый выходной ток. Немного энергии теряется из-за сопротивления и других факторов, но эти потери минимальны. Такой конвертер имеет эффективность 90% и выше.
Этот драйвер при работе мало греется и не требует теплоотвода.

Настройка выходного тока

Драйвер может быть настроен на выходной ток от 350 мА до 1А. Изменяя значение R2 и подключая сопротивление R11, вы можете изменить выходной ток.

Потенциометр изменяет выходной ток от 9 до 100% от заданного тока. Если вы настроили драйвер на 1А на выходе, то минимальный возможный выходной ток будет 90мА. Это можно использовать для регулировки яркости светодиода.

ШИМ вход

Для основной работы схемы достаточно одного компаратора. Но в LM393 есть два компаратора. Чтобы второй компаратор не пропадал, я добавил управление ШИМ сигналом. Второй компаратор работает как логический, так что на входе ШИМ не должен быть никуда подключен или на нём должен быть высокий логический уровень. Обычно этот вывод можно оставить не подключённым и драйвер будет работать без ШИМ. Но если вам нужен дополнительный контроль, вы можете подключить Arduino или микроконтроллер и управлять светодиодами при помощи его. При помощи одного Arduino можно контролировать до 6 драйверов.

ШИМ работает в пределах текущего уровня, установленного потенциометром. Т.е. если вы поставите минимальный ток и ШИМ на 10%, то ток будет ещё ниже.

Источник ШИМ сигнала не ограничивается микроконтроллером. Можно использовать все, что производит напряжение от 0 до 5В. Можете использовать фоторезисторы, таймеры, логические микросхемы. Максимальная частота ШИМ составляет около 2 кГц, но я думаю, что максимальная частота 1 кГц будет оптимальной.

ШИМ вход также может быть использован в качестве входа для пульта дистанционного управления включения / выключения. Но схема будет работать, когда выключатель разомкнут и выключена, когда замкнут.

Сборка схемы очень проста. Все использованные детали стандартные.

Аналоги

Индуктивность L1 может быть от 47 до 100 мкГн, с током как минимум 1.2А. C1 может быть от 1 до 10 мкФ. С4 может быть до 22 мкФ, на минимум 35В постоянного тока.
Q1 и Q2 можно заменить на практически любые транзисторы общего назначения. Q3 может быть заменен другим P-канальным MOSFET –транзистором с током утечки более 2А, напряжением сток-исток не менее 30 В, и входным порогом ниже 4В.

Сборка
Припаяйте детали начиная с самых маленьких, в данном случае это IC1. Все резисторы и диоды установлены вертикально. Будьте внимательны с полярностью и цоколёвкой диодов и транзисторов.

Я разработал одностороннюю печатную плату, которую можно изготовить дома. Gerber файлы можно скачать ниже.

Подключение светодиодов

Напряжение питания должно быть не менее 2В, в соответствии с документацией к светодиодам. Напряжение питания белых светодиодов около 3.5В.

При максимальном напряжении питания к этому драйверу можно подключить до 6 светодиодов, соединенных последовательно. Лучше подключать светодиоды так, чтобы все они получали одинаковый ток. Ниже показано количество светодиодов и требуемое им напряжение питания.

Вы можете использовать последовательно-параллельное подключение светодиодов для подключения большего количества светодиодов по мере необходимости. Если у вас есть только источник питания 12В, но вы хотите подключить 6 светодиодов, сделать две строки из 3 светодиодов включенных последовательно и подключите их параллельно, как показано на схеме.

Я уверен, что есть множество применений для небольшого драйвера – фары, настольные лампы, фонари т.д. Питать схему можно напряжением от 5 до 24В, от этого будет зависеть количество подключаемых светодиодов. Для питания лучше использовать батарейки.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 Компаратор

LM393

1 В блокнот
Q1 Биполярный транзистор

2N5551

1 2222, 3904 и др. В блокнот
Q2 Биполярный транзистор

2N5401

1 2907, 3906 и др. В блокнот
Q3 MOSFET-транзистор

NTD2955

1 IRFU9024 В блокнот
D1, D2 Выпрямительный диод

1N4148

2 В блокнот
D3 Диод Шоттки

SB140

1 В блокнот
L1 Катушка индуктивности 47-100 мкГн/1.2A 1 В блокнот
C1 Конденсатор 2.2 мкФ 1 В блокнот
C2, C3 Конденсатор 0.1 мкФ 2 В блокнот
C4 Электролитический конденсатор 100мкФ 35В 1 В блокнот
C5 Конденсатор 22 пФ 1 Опционально В блокнот
R1, R4, R7 Резистор

4.7 кОм

3

Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В. Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение. Давно собираюсь сделать плавный искусственный рассвет, чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.

Драйвера с питанием от 5В до 30В

Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие. Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.

В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.

Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.

Особенно популярны модели на LM2596, которые уже прилично устарели из-за низкого КПД. Еще они сильно греются, поэтому без системы охлаждения не держат более 1 Ампера.

Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.

Включение 1 диода

Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.

Параллельное подключение

При параллельном соединении желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность. Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся. На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.

Рациональность применений каждого способа рассчитывают исходя из требований к изделию.

Последовательное подключение

Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт. В длинной цепочке из 60-70 LED на каждом падает 3В, что и позволяет подсоединять напрямую к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.

Такое соединение применяют в любой светотехнике:

  1. светодиодные лампах для дома;
  2. led светильники;
  3. новогодние гирлянды на 220В;
  4. светодиодные ленты на 220.

В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.

Соблюдайте осторожность, если видите длинную последовательную цепочку, к тому же на них не всегда есть заземление. Мой сосед схватил кукурузу голыми руками и потом рассказывал увлекательные стихи из нехороших слов.

Подключение RGB LED

Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.

Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.

Включение COB диодов

Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.

Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.

Подключение SMD5050 на 3 кристалла

От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов белого света, поэтому имеет 6 ножек. То есть он равен трём SMD2835, сделанным на этих же кристаллах.

При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.

При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.

Светодиодная лента 12В SMD5630

Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.

Светодиодная лента RGB 12В SMD5050

В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.

Загрузка...