dreamteamrealty.ru

Тепловая электростанция. Угольная электростанция На большинстве станций выработанная электроэнергия делится на три потока

13.12.2010
Президент России Дмитрий Медведев на заседании Совета безопасности страны 13 декабря поручил правительству разработать доктрину энергетической безопасности . Об этом сообщает РИА Новости
  ........................................
  Президент отметил, что сейчас в России на электростанциях неоправданно часто используется газ. "Мы все еще неоправданно тратим наши газовые запасы, переводя на "голубое топливо" даже те ТЭЦ и котельные, где можно было бы эффективно использовать уголь", - цитирует слова президента "Интерфакс" .
  Имеются такие конструктивные решения, на основе которых можно модернизировать существующие и строить новые тепловые электростанции, обеспечивая при этом снижение стоимости производства электроэнергии и уменьшение вредных выбросов в окружающую среду

РИЧАРД Э. БОЛЗХАЙЗЕР, КУРТ Э. ИГЕР
  "В мире науки" (Scientific American) №11 1987

В1879 г., когда Томас Алва Эдисон изобрел лампу накаливания, началась эра электрификации. Для производства больших количеств электроэнергии требовалось дешевое и легкодоступное топливо. Этим требованиям удовлетворял каменный уголь, и первые электростанции (построенные в конце XIX в. самим Эдисоном) работали на угле. По мере того как в стране строилось все больше и больше станций, зависимость от угля возрастала. Начиная с первой мировой войны примерно половина ежегодного производства электроэнергии в США приходилась на тепловые электростанции, работающие на каменном угле. В 1986 г. общая установленная мощность таких электростанций составила 289000 МВт, и они потребляли 75% всего количества (900 млн. т) добываемого в стране угля. Учитывая существующие неопределенности в отношении перспектив развития ядерной энергетики и роста добычи нефти и природного газа, можно предположить, что к концу века тепловые станции на угольном топливе будут производить до 70% всей вырабатываемой в стране электроэнергии.
  Однако, несмотря на то что уголь долгое время был и еще многие годы будет основным источником получения электроэнергии (в США на его долю приходится около 80% запасов всех видов природных топлив), он никогда не был оптимальным топливом для электростанций. Удельное содержание энергии на единицу веса (т. е. теплотворная способность) у угля ниже, чем у нефти или природного газа. Его труднее транспортировать, и, кроме того, сжигание угля вызывает целый ряд нежелательных экологических последствий, в частности выпадение кислотных дождей. С конца 60-х годов привлекательность тепловых станций на угле резко пошла на убыль в связи с ужесточением требований к загрязнению среды газообразными и твердыми выбросами в виде золы и шлаков. Расходы на решение этих экологических проблем наряду с возрастающей стоимостью строительства таких сложных объектов, какими являются тепловые электростанции, сделали менее благоприятными перспективы их развития с чисто экономической точки зрения.
  Однако, если изменить технологическую базу тепловых станций на угольном топливе, их былая привлекательность может возродиться. Некоторые из этих изменений носят эволюционный характер и нацелены главным образом на увеличение мощности существующих установок. Вместе с тем разрабатываются совершенно новые процессы безотходного сжигания угля, т. е. с минимальным ущербом для окружающей среды. Внедрение новых технологических процессов направлено на то, чтобы будущие тепловые электростанции на угольном топливе поддавались эффективному контролю на степень загрязнения ими окружающей среды, обладали гибкостью с точки зрения возможности использования различных видов угля и не требовали больших сроков строительства.

Для того чтобы оценить значение достижений в технологии сжигания угля, рассмотрим кратко работу обычной тепловой электростанции на угольном топливе. Уголь сжигается в топке парового котла, представляющего собой огромную камеру с трубами внутри, в которых вода превращается в пар. Перед подачей в топку уголь измельчается в пыль, за счет чего достигается почти такая же полнота сгорания, как и при сжигании горючих газов. Крупный паровой котел потребляет ежечасно в среднем 500 т пылевидного угля и генерирует 2,9 млн. кг пара, что достаточно для производства 1 млн. квт-ч электрической энергии. За то же время котел выбрасывает в атмосферу около 100000 м3 газов.
  Генерированный пар проходит через пароперегреватель, где его темпе¬ратура и давление увеличиваются, и затем поступает в турбину высокого давления. Механическая энергия вращения турбины преобразуется электрогенератором в электрическую энергию. Для того чтобы получить более высокий кпд преобразования энергии, пар из турбины обычно возвращается в котел для вторичного перегрева и затем приводит в движение одну или две турбины низкого давления и только после этого конденсируется путем охлаждения; конденсат возвращается в цикл котла.
  Оборудование тепловой электростанции включает механизмы топливоподачи, котлы, турбины, генераторы, а также сложные системы охлаждения, очистки дымовых газов и удаления золы. Все эти основные и вспомогательные системы рассчитываются так, чтобы работать с высокой надежностью в течение 40 или более лет при нагрузках, которые могут меняться от 20% установленной мощности станции до максимальной. Капитальные затраты на оборудование типичной тепловой электростанции мощностью 1000 МВт, как правило, превышают 1 млрд. долл.

Эффективность, с которой тепло, освобожденное при сжигании угля, может быть превращено в электричество, до 1900 г. составляла лишь 5%, но к 1967 г. достигла 40%. Другими словами, за период около 70 лет удельное потребление угля на единицу производимой электрической энергии сократилось в восемь раз. Соответственно происходило и снижение стоимости 1 кВт установленной мощности тепловых электростанций: если в 1920 г. она составляла 350 долл. (в ценах 1967 г.), то в 1967 г. снизилась до 130 долл. Цена отпускаемой электроэнергии также упала за тот же период с 25 центов до 2 центов за 1 кВт-чае.
  Однако начиная с 60-х годов темпы прогресса стали падать. Эта тенденция, по-видимому, объясняется тем, что традиционные тепловые электростанции достигли предела своего совершенства, определяемого законами термодинамики и свойствами материалов, из которых изготавливаются котлы и турбины. С начала 70-х годов эти технические факторы усугубились новыми экономическими и организационными причинами. В частности, резко возросли капитальные затраты, темпы роста спроса на электроэнергию замедлились, ужесточились требования к защите окружающей среды от вредных выбросов и удлинились сроки реализации проектов строительства электростанций. В результате стоимость производства электроэнергии из угля, имевшая многолетнюю тенденцию к снижению, резко возросла. Действительно, 1 кВт электроэнергии, производимой новыми тепловыми электростанциями, стоит теперь больше, чем в 1920 г. (в сопоставимых ценах).


  ДЕМОНСТРАЦИОННАЯ СТАНЦИЯ "Cool Water" фирмы Southern California Edison ежедневно перерабатывает 1000 т каменного угля, получая сгорающий без отходов газ.
  Продукты сгорания приводят во вращение газовую турбину электрогенератора. Отработанное тепло выхлопных газов используется для производства водяного пара, который вращает паровую турбину другого электрогенератора.
  На фотографии видны два угольных бункера (в центре). Справа от них газификационная установка, система охлаждения газов и электрогенерирующее оборудование.

В последние 20 лет на стоимость тепловых электростанций на угольном топливе наибольшее влияние оказывали ужесточившиеся требования к удалению газообразных,
  жидких и твердых отходов. На системы газоочистки и золоудаления современных тепловых электростанций теперь приходится 40% капитальных затрат и 35% эксплуатационных расходов. С технической и экономической точек зрения наиболее значительным элементом системы контроля выбросов является установка для де-сульфуризации дымовых газов, часто называемая системой мокрого (скрубберного) пылеулавливания. Мокрый пылеуловитель (скруббер) задерживает окислы серы, являющиеся основным загрязняющим веществом, образующимся при сгорании угля.
  Идея мокрого пылеулавливания проста, но на практике оказывается трудно осуществимой и дорогостоящей. Щелочное вещество, обычно известь или известняк, смешивается с водой, и раствор распыляется в потоке дымовых газов. Содержащиеся в дымовых газах окислы серы абсорбируются частицами щелочи и выпадают из раствора в виде инертного сульфита или сульфата кальция (гипса). Гипс может быть легко удален или, если он достаточно чист, может найти сбыт как строительный материал. В более сложных и дорогих скрубберных системах гипсовый осадок может превращаться в серную кислоту или элементарную серу - более ценные химические продукты. С 1978 г. установка скрубберов является обязательной на всех строящихся тепловых электростанциях на пылеугольном топливе. В результате этого в энерге¬тической промышленности США сейчас больше скрубберных установок, чем во всем остальном мире.
  Стоимость скрубберной системы на новых станциях обычно составляет 150-200 долл. на 1 кВт установленной мощности. Установка скрубберов на действующих станциях, первоначально спроектированных без мокрой газоочистки, обходится на 10-40% дороже, чем на новых станциях. Эксплуатационные расходы на скрубберы довольно высоки независимо от того, установлены они на старых или новых станциях. В скрубберах образуется огромное количество гипсового шлама, который необходимо выдерживать в отстойных прудах или удалять в отвалы, что создает новую экологическую проблему. Например, тепловая электростанция мощностью 1000 МВт, работающая на каменном угле, содержащем 3% серы, производит в год столько шлама, что им можно покрыть площадь в 1 км2 слоем толщиной около 1 м.
  Кроме того, системы мокрой газоочистки потребляют много воды (на станции мощностью 1000 МВт расход воды составляет около 3800 л/мин), а их оборудование и трубопроводы часто подвержены засорению и коррозии. Эти факторы увеличивают эксплуатационные расходы и снижают общую надежность систем. Наконец, в скрубберных системах расходуется от 3 до 8% вырабатываемой станцией энергии на привод насосов и дымососов и на подогрев дымовых газов после газоочистки, что необходимо для предотвращения конденсации и коррозии в дымовых трубах.
  Широкое распространение скрубберов в американской энергетике не было ни простым, ни дешевым. Первые скрубберные установки были значительно менее надежными, чем остальное оборудование станций, поэтому компоненты скрубберных систем проектировались с большим запасом прочности и надежности. Некоторые из трудностей, связанные с установкой и эксплуатацией скрубберов, могут быть объяснены тем фак том, что промышленное применение технологии скрубберной очистки было начато преждевременно. Только теперь, после 25-летнего опыта, надежность скрубберных систем достигла приемлемого уровня.
  Стоимость тепловых станций на угольном топливе возросла не только из-за обязательного наличия систем контроля выбросов, но также и потому, что стоимость строительства сама по себе резко подскочила вверх. Даже с учетом инфляции удельная стоимость установленной мощности тепловых станций на угольном топливе сейчас в три раза выше, чем в 1970 г. За прошедшие 15 лет «эффект масштаба», т. е. выгода от строительства крупных электростанций, был сведен на нет значительным удорожанием строительства. Частично это удорожание отражает высокую стоимость финансирования долгосрочных объектов капитального строительства.
  Какое влияние имеет задержка реализации проекта, можно видеть на примере японских энергетических компаний. Японские фирмы обычно более расторопны, чем их американские коллеги, в решении организационно-технических и финансовых проблем, которые часто задерживают ввод в эксплуатацию крупных строительных объектов. В Японии электростанция может быть построена и пущена в действие за 30-40 месяцев, тогда как в США для станции такой же мощности обычно требуется 50-60 месяцев. При таких больших сроках реализации проектов стоимость новой строящейся станции (и, следовательно, стоимость замороженного капитала) оказывается сравнимой с основным капиталом многих энергетических компаний США.
  Поэтому энергетические компании ищут пути снижения стоимости строительства новых электрогенерирующих установок, в частности применяя модульные установки меньшей мощности, которые можно быстро транспортировать и устанавливать на существующей станции для удовлетворения растущей потребности. Такие установки могут быть пущены в эксплуатацию в более короткие сроки и поэтому окупаются быстрее, даже если коэффициент окупаемости капиталовложений остается постоянным. Установка новых модулей только в тех случаях, когда требуется увеличение мощности системы, может дать чистую экономию до 200 долл. на 1 кВт, несмотря на то что при применении маломощных установок теряются выгоды от «эффекта масштаба».
  В качестве альтернативы строительству новых электрогенерирующих объектов энергетические компании также практиковали реконструкцию действующих старых электростанций для улучшения их рабочих характеристик и продления срока службы. Эта стратегия, естественно, требует меньших капитальных затрат, чем строительство новых станций. Такая тенденция оправдывает себя и потому, что электростанции, построенные около 30 лет назад, еще не устарели морально. В некоторых случаях они работают даже с более высоким кпд, так как не оснащены скрубберами. Старые электростанции приобретают все больший удельный вес в энергетике страны. В 1970 г. только 20 электрогенерирующих объектов в США имели возраст более 30 лет. К концу века 30 лет будет средним воз¬растом тепловых электростанций на угольном топливе.
  Энергетические компании также ищут пути снижения эксплуатационных расходов на станциях. Для предотвращения потерь энергии необходимо обеспечить своевременное предупреждение об ухудшении рабочих характеристик наиболее важных участков объекта. Поэтому непрерывное наблюдение за состоянием узлов и систем становится важной составной частью эксплуатационной службы. Такой непрерывный контроль естественных процессов износа, коррозии и эрозии позволяет операторам станции принять своевременные меры и предупредить аварийный выход из строя энергетических установок. Значимость таких мер может быть правильно оценена, если учесть, например, что вынужденный простой станции на угольном топливе мощностью 1000 МВт может принести энергетической компании убытки в 1 млн. долл. в день, главным образом потому, что невыработанная энергия должна быть компенсирована путем энергоснабжения из более дорогих источников.
  Рост удельных расходов на транспортировку и обработку угля и на шлакоудаление сделал важным фактором и качество угля (определяемое содержанием влаги, серы и других минералов), определяющее рабочие характеристики и экономику тепловых электростанций. Хотя низкосортный уголь может стоить дешевле высокосортного, его расход на производство того же количества электрической энергии значительно больше. Затраты на перевозку большего объема низкосортного угля могут перекрыть выгоду, обусловленную его более низкой ценой. Кроме того, низкосортный уголь дает обычно больше отходов, чем высокосортный, и, следовательно, необходимы большие затраты на шлакоудаление. Наконец, состав низкосортных углей подвержен большим колебаниям, что затрудняет «настройку» топливной системы станции на работу с максимально возможным кпд; в этом случае система должна быть отрегулирована так, чтобы она могла работать на угле наихудшего ожидаемого качества.
  На действующих электростанциях качество угля может быть улучшено или по крайней мере стабилизировано путем удаления перед сжиганием некоторых примесей, например серосодержащих минералов. В очистных установках измельченный «грязный» уголь отделяется от примесей многими способами, использующими различия в удельном весе или других физических характеристиках угля и примесей.
  Несмотря на указанные мероприятия по улучшению рабочих характеристик действующих тепловых электростанций на угольном топливе, в США к концу столетия нужно будет ввести в строй дополнительно 150000 МВт энергетических мощностей, если спрос на электроэнергию будет расти с ожидаемым темпом 2,3% в год. Для сохранения конкурентоспособности угля на постоянно расширяющемся энергетическом рынке энергетическим компаниям придется принять на вооружение новые прогрессивные способы сжигания угля, которые являются более эффективными, чем традиционные, в трех ключевых аспектах: меньшее загрязнение окружающей среды, сокращение сроков строительства электростанций и улучшение их рабочих и эксплуатационных характеристик.


  СЖИГАНИЕ УГЛЯ В ПСЕВДООЖИЖЕННОМ СЛОЕ уменьшает потребность во вспомогательных установках по очистке выбросов электростанции.
  Псевдоожиженныи слой смеси угля и известняка создается в топке котла воздушным потоком, в котором твердые частицы перемешиваются и находятся во взвешенном состоянии, т. е. ведут себя так же, как в кипящей жидкости.
  Турбулентное перемешивание обеспечивает полноту сгорания угля; при этом частицы известняка реагируют с окислами серы и улавливают около 90% этих окислов. Поскольку нагревательные грубы котла непосредственно касаются кипящего слоя топлива, генерация пара происходит с большей эффективностью, чем в обычных паровых котлах, работающих на измельченном угле.
  Кроме того, температура горящего угля в кипящем слое ниже, что предотвращает плавление котельного шлака и уменьшает образование окислов азота.


  ГАЗИФИКАЦИЯ УГЛЯ может быть осуществлена нагреванием смеси угля и воды в атмосфере кислорода. Продуктом процесса является газ, состоящий в основном из окиси углерода и водорода. После того как газ будет охлажден, очищен от твердых частиц и освобожден от серы, его можно использовать как топливо для газовых турбин, а затем для производства водяного пара для паровой турбины (комбинированный цикл).
  Станция с комбинированным циклом выбрасывает в атмосферу меньше загрязняющих веществ, чем обычная тепловая станция на угле.

В настоящее время разрабатывается более десятка способов сжигания угля с повышенным кпд и меньшим ущербом для окружающей среды. Наиболее перспективными среди них являются сжигание в псевдоожиженном слое и газификация угля. Сжигание по первому способу производится в топке парового котла, которая устроена так, что измельченный уголь в смеси с частицами известняка поддерживается над решеткой топки во взвешенном («псевдо-ожиженном») состоянии мощным восходящим потоком воздуха.
  Взвешенные частицы ведут себя в сущности так же, как и в кипящей жидкости, т. е. находятся в турбулентном движении, что обеспечивает высокую эффективность процесса горения. Водяные трубы такого котла находятся в непосредственном контакте с «кипящим слоем» горящего топлива, в результате чего большая доля тепла передается теплопроводностью, что значительно более эффективно, чем радиационный и конвективный перенос тепла в обычном паровом котле.
  Котел с топкой, где уголь сжигается в псевдоожиженном слое, имеет большую площадь теплопередающих поверхностей труб, чем обычный котел, работающий на измельченном в пыль угле, что позволяет снизить температуру в топке и тем самым уменьшить образование окислов азота. (Если температура в обычном котле может быть выше 1650 °С, то в котле с сжиганием в псевдоожиженном слое она находится в пределах 780-870 °С.) Более того, известняк, примешанный к углю, связывает 90 или более процентов серы, освободившейся из угля при горении, так как более низкая рабочая температура способствует прохождению реакции между серой и известняком с образованием сульфита или сульфата кальция. Таким образом вредные для окружающей среды вещества, образующиеся при сжигании угля, нейтрализуются на месте образования, т. е. в топке.
  Кроме того, котел с сжиганием в псевдоожиженном слое по своему устройству и принципу работы менее чувствителен к колебаниям качества угля. В топке обычного котла, работающего на пылевидном угле, образуется огромное количество расплавленного шлака, который часто забивает теплопередающие поверхности и тем самым снижает кпд и надежность котла. В котле с сжиганием в псевдоожиженном слое уголь сгорает при температуре ниже точки плавления шлака и поэтому проблема засорения поверхностей нагрева шлаком даже не возникает. Такие котлы могут работать на угле более низкого качества, что в некоторых случаях позволяет существенно снизить эксплуатационные расходы.
  Способ сжигания в псевдоожиженном слое легко реализуется в котлах модульной конструкции с небольшой паропроизводительностью. По некоторым оценкам капиталовложения на тепловую электростанцию с компактными котлами, работающими по принципу псевдоожиженного слоя, могут быть на 10-20% ниже капиталовложений на тепловую станцию традиционного типа такой же мощности. Экономия достигается за счет сокращения времени строительства. Кроме того, мощность такой станции можно легко нарастить при увеличении электрической нагрузки, что важно для тех случаев, когда ее рост в будущем заранее неизвестен. Упрощается и проблема планирования, так как такие компактные установки можно быстро смонтировать, как только возникнет необходимость увеличения выработки электроэнергии.
  Котлы со сжиганием в псевдоожиженном слое могут также включаться в схему существующих электростанций, когда необходимо быстро увеличить генерируемую мощность. Например, энергетическая компания Northern States Power переделала один из пылеугольных котлов на станции в шт. Миннесота в котел с псевдоожиженным слоем. Переделка осуществлялась с целью увеличения мощности электростанции на 40%, снижения требований к качеству топива (котел может работать даже на местных отходах), более тщательной очистки выбросов и удлинения срока службы станции до 40 лет.
  За прошедшие 15 лет масштабы применения технологии, используемой на тепловых электростанциях, оснащенных исключительно котлами со сжиганием в псевдоожиженном слое, расширились от мелких экспериментальных и полупромышленных установок до крупных «демонстрационных» станций. Такая станция с общей мощностью 160 МВт строится совместно компаниями Tennessee Valley Authority, Duke Power и Commonwealth of Kentucky; фирма Colorado-Ute Electric Association, Inc. пустила в эксплуатацию электрогенерирующую установку мощностью 110 МВт с котлами со сжиганием в псевдоожиженном слое. В случае успеха этих двух проектов, а также проекта компании Northern States Power, совместного предприятия частного сектора с общим капиталом около 400 млн. долл., экономический риск, связанный с применением котлов со сжиганием в псевдоожиженном слое в энергетической промышленности будет значительно уменьшен.
  Другим способом, который, правда, уже существовал в более простом виде еще в середине XIX в., является газификация каменного угля с получением «чисто горящего» газа. Такой газ пригоден для освещения и отопления и широко использовался в США до второй мировой войны, пока не был вытеснен природным газом.
  Первоначально газификация угля привлекла внимание энергетических компаний, которые надеялись с помощью этого способа получить сгорающее без отходов топливо и за счет этого избавиться от скрубберной очистки. Теперь стало очевидно, что газификация угля имеет и более важное преимущество: горячие продукты сгорания генераторного газа можно непосредственно использовать для привода газовых турбин. В свою очередь отработанное тепло продуктов сгорания после газовой турбины может быть утилизировано с целью получения пара для привода паровой турбины. Такое совместное использование газовых и паровых турбин, называемое комбинированным циклом, является ныне одним из самых эффективных способов производства электрической энергии.
  Газ, полученный газификацией каменного угля и освобожденный от серы и твердых частиц, является прекрасным топливом для газовых турбин и, как и природный газ, сгорает почти без отходов. Высокий кпд комбинированного цикла компенсирует неизбежные потери, связанные с превращением угля в газ. Более того, станция с комбинированным циклом потребляет значительно меньше воды, так как две трети мощности развивает газовая турбина, которая не нуждается в воде в отличие от паровой турбины.
  Жизнеспособность электрических станций с комбинированным циклом, работающих на принципе газификации угля, была доказана опытом эксплуатации станции "Cool Water" фир¬мы Southern California Edison. Эта станция мощностью около 100 МВт была введена в эксплуатацию в мае 1984 г. Она может работать на разных сортах угля. Выбросы станции по чистоте не отличаются от выбросов соседней станции, работающей на природном газе. Содержание окислов серы в уходящих газах поддерживается на уровне значительно ниже установленной нормы с помощью вспомогательной системы улавливания серы, которая удаляет почти всю серу, содержащуюся в исходном топливе, и производит чистую серу, используемую в промышленных целях. Образование окислов азота предотвращается добавкой к газу воды перед сжиганием, что снижает температуру горения газа. Более того, остающийся в газогенераторе остаток несгоревшего угля подвергается переплавке и превращается в инертный стекловидный материал, который после охлаждения отвечает требованиям, предъявляемым в штате Калифорния к твердым отходам.
  Помимо более высокого кпд и меньшего загрязнения окружающей среды станции с комбинированным циклом имеют еще одно преимущество: они могут сооружаться в несколько очередей, так что установленная мощность наращивается блоками. Такая гибкость строительства уменьшает риск чрезмерных или, наоборот, недостаточных капиталовложений, связанный с неопределенностью роста спроса на электроэнергию. Например, первая очередь установленной мощности может работать на газовых турбинах, а в качестве топлива использовать не уголь, а нефть или природный газ, если текущие цены на эти продукты низки. Затем, по мере роста спроса на электроэнергию, дополнительно вводятся в строй котел-утилизатор и паровая турбина, что увеличит не только мощность, но и кпд станции. Впоследствии, когда спрос на электроэнергию вновь увеличится, на станции можно будет построить установку для газификации угля.
  Роль тепловых электростанций на угольном топливе является ключевой темой, когда речь идет о сохранности природных ресурсов, защите окружающей среды и путях развития экономики. Эти аспекты рассматриваемой проблемы не обязательно являются конфликтующими. Опыт применения новых технологических процессов сжигания угля показывает, что они могут успешно и одновременно решать проблемы и охраны окружающей среды, и снижения стоимости электроэнергии. Этот принцип был учтен в совместном американо-канадском докладе о кислотных дождях, опубликованном в прошлом году. Руководствуясь содержащимися в докладе предложениями, конгресс США в настоящее время рассматривает возможность учреждения генеральной национальной инициативы по демонстрации и применению «чистых» процессов сжигания угля. Эта инициатива, которая объединит частный капитал с федеральными капиталовложениями, нацелена на широкое промышленное применение в 90-е годы новых процессов сжигания угля, включая котлы с сжиганием топлива в кипящем слое и газогенераторы. Однако даже при широком применении новых процессов сжигания угля в ближайшем будущем растущий спрос на электроэнергию не сможет быть удовлетворен без целого комплекса согласованных мероприятий по консервации электроэнергии, регулированию ее потребления и повышению производительности существующих тепловых электростанций, работающих на традиционных принципах. Постоянно стоящие на повестке дня экономические и экологические проблемы, вероятно, приведут к появлению совершенно новых технологических разработок, принципиально отличающихся от тех, что были здесь описаны. В перспективе тепловые электростанции на угольном топливе могут превратиться в комплексные предприятия по переработке природных ресурсов. Такие предприятия будут перерабатывать местные виды топлива и другие природные ресурсы и производить электроэнергию, тепло и различные продукты с учетом потребностей местной экономики. Кроме котлов с сжиганием в кипящем слое и установок для газификации угля такие предприятия будут оснащены электронными системами технической диагностики и автоматизированными системами управления и, кроме того, полезно использовать большинство побочных продуктов сжигания угля.
  Таким образом, возможности улучшения экономических и экологических факторов производства электроэнергии на базе каменного угля очень широкие. Своевременное использование этих возможностей зависит, однако, от того, сможет ли правительство проводить сбалансированную политику в отношении производства энергии и защиты окружающей среды, которая создала бы необходимые стимулы для электроэнергетической промышленности. Необходимо принять меры к тому, чтобы новые процессы сжигания угля развивались и внедрялись рационально, при сотрудничестве с энергетическими компаниями, а не так, как это было с внедрением скрубберной газоочистки. Все это можно обеспечить, если свести к минимуму затраты и риск путем хорошо продуманного проектирования, испытания и усовершенствования небольших опытных экспериментальных установок с последующим широким промышленным внедрением разрабатываемых систем.

Тем временем угледобывающие компании РФ наращивают добычу угля, который заранее законтрактован за рубежом. Одна из причин «газового» дисбаланса в энергетике – в отсутствии современных технологий сжигания и переработки угля, позволяющих не только использовать в полной мере преимущества востребованных на мировом рынке энергетических углей РФ, но и находить адекватное применение для низкокачественных углей и угольных отходов, превращая минусы в плюсы. Так считает Игорь Кожуховский, генеральный директор Агентства по прогнозированию балансов в электроэнергетике (ЗАО «АПБЭ») .

– Сегодня в российской энергетике сложилась парадоксальная ситуация: утверждена стратегия развития угольной отрасли, при этом подразумевается, что основным стимулом для угольного роста будет экспорт. Как сложилась эта тенденция? И насколько существенное место занимают потребности внутреннего рынка угля в перспективных планах российских энергокомпаний?

– Российские ТЭС традиционно являлись крупнейшими потребителями угля на внутреннем рынке. Но в 2010 году произошло знаковое событие – объем экспорта энергетических углей сравнялся с объемом поставки на отечественные электростанции, а в 2011 году – заметно превзошел его. В 2011 году объем экспорта российских энергетических углей составил 108,3 миллиона тонн, увеличившись по сравнению с 2010 годом на 12,4 миллиона тонн (13 процентов). Экспорт стал крупнейшим сектором потребления российских энергетических углей, а доля поставки на отечественные ТЭС снизилась с 39,8 до 31,4 процента.

Сегодня 90 процентов суммарного ежегодного объема потребления угольного топлива на ТЭС России составляют низкокачественные угли, высококачественные марки идут на экспорт. Несмотря на то что объемы обогащения энергетических углей в России в последние годы увеличиваются, обогащенные угли на российские станции как не поставлялись, так и не поставляются.

Конкурирует экспорт с внутренними потребителями и на рынке полувагонов. Приоритетом для угольных компаний является удовлетворение экспортного спроса, и лишь оставшийся вагонный парк используется для поставок внутренним потребителям.

На внутреннем рынке возник дефицит качественных углей марок СС и Т. Участились случаи, когда электростанции не могут приобрести нужный уголь в необходимом количестве либо поставщики предлагают его по ценам, не удовлетворяющим ценовым ограничениям на электроэнергию. В итоге, началось использование на ТЭС непроектных марок углей и даже отходов углеобогащения и угледобычи, что повышает аварийность работы оборудования.

Например, на Черепетской ГРЭС проведена апробация сжигания смеси отходов и угля, а также импортных экибастузских углей, на Кемеровских ТЭС – апробация сжигания марок Г/Д вместо Т/СС, на Южно-Кузбасской ГРЭС и Западно-Сибирской ТЭС – апробация сжигания промпродукта (отходов обогащения коксующихся углей).

Основные угли, потребляемые на ТЭС России, – кузнецкие, канско-ачинские и импортные экибастузские. Их совокупная доля в суммарном объеме поставок составляет около 60 процентов. При этом объемы поставок кузнецких углей снижаются, канско-ачинских и экибастузских – растут. В 2011 году импортный экибастузский уголь вышел на первое место по объемам поставки на ТЭС России, опередив крупнейшие российские угольные бассейны.

– Итак, качественный энергетический уголь России идет на экспорт, в то время как отечественные станции вынуждены довольствоваться тем, что не востребовано за рубежом. Связано ли это с более благоприятной ценовой конъюнктурой на внешнем рынке? Или есть и другие причины?

– Действующие угольные электростанции (за редким исключением) построены в расчете на «проектный» уголь конкретных месторождений, а высококачественный уголь нужен современным угольным станциям на чистых угольных технологиях, которых в нашей электроэнергетике нет. Чтобы создать спрос на высококачественный энергетический уголь, нужно модернизировать угольную энергетику страны.

Слабые стимулы по сдерживанию цен на оптовом рынке, его несовершенство и неэффективность провоцируют пассивность генераторов. Им невыгодно оптимизировать топливообеспечение, поскольку они уверены, что все затраты на уголь будут включены в цену на электроэнергию.

– Насколько велика доля угольной генерации в энергобалансе РФ?

– На электростанциях России ежегодно производится более 1 триллиона кВт-ч электроэнергии, в том числе 68 процентов – на тепловых электростанциях, большинство из которых работает на природном газе. Производство электроэнергии на угле в России составляет около 200 миллиардов кВт-ч (примерно одна пятая в структуре производства).

Структура производства электроэнергии по видам генерации в разных регионах России неоднородна. Если в европейской части, включая Урал, тепловая энергетика ориентирована в основном на газ и доля угля незначительна (менее 10 процентов), то в Сибири и на Дальнем Востоке каждый второй киловатт-час производится на угле.

Прирост энергопотребления в России за последние десять лет составил 20 процентов, и в основном он был обеспечен газовой генерацией. Уголь в то же время постепенно проигрывал на внутреннем рынке межтопливную конкуренцию газу.

– Утвержденная пять лет назад Генеральная схема размещения объектов электроэнергетики подразумевала интенсивный рост доли угля в генерации. Скорректированный вариант документа предусматривает более скромные показатели. Значит ли это, что выравнивание энергобаланса в пользу угля отходит на второй план? Как обстоят дела с модернизационными проектами, «заточенными» именно под добычу угля для российского потребителя?

– В первоначальных стратегических документах развития отрасли –«Энергетической стратегии России на период до 2020 года» (2003 год) и «Генеральной схеме размещения объектов электроэнергетики на период до 2020 года» (2008 год) – была дана целевая установка на опережающее развитие угольной генерации. Но в «Энергетической стратегии России на период до 2030 года» (2009 год), «Генеральной схеме размещения объектов электроэнергетики на период до 2020 года с перспективой до 2030 года» (2010 год) и «Долгосрочной программе развития угольной промышленности на период до 2030 года» (2012 год) вектор «опережающего развития угольной генерации» изменился на «незначительный темп роста».

Показательно, насколько целевая цифра потребления угля на ТЭС России в 2030 году, предусмотренная в последнем документе, ниже аналогичной цифры «Энергостратегии 2030»: 102 и 158 миллионов тонн, соответственно!

Прогноз объемов потребления угля в электроэнергетике России, разработанный в «Долгосрочной программе развития угольной промышленности до 2030 года», основан на данных «Генсхемы 2030» и учитывает фактические планы генерирующих компаний по вводу новых и модернизации действующих угольных мощностей, объем которых суммарно составит 26,1 ГВт до 2030 года.

Все они будут основаны на «чистых» угольных технологиях – суперсверхкритических параметрах пара (ССКП), циркулирующем кипящем слое (ЦКС), газификации угля и так далее, так как рост платы за выбросы загрязняющих веществ и возможное введение платы за выбросы СО2 сделают применение традиционных технологий еще более неконкурентоспособным.

В планах на 2012‑2020 годы – реализация пилотных проектов современных технологий сжигания угля на ТЭС, необходимых для последующего промышленного освоения. Например, заканчивается строительство энергоблока ЦКС 330 МВт на Новочеркасской ГРЭС. Проекты ССКП находятся на стадии НИОКР.

Россия отстает от европейских стран, Китая, США в области внедрения «чистых» угольных технологий, но вектор государственной политики направлен на поддержку развития внутреннего рынка угля. Не зря на январском совещании по развитию угольной промышленности в Кемерове органы исполнительной власти субъектов РФ услышали рекомендацию предусматривать максимально возможное использование угля для снабжения ТЭС при подготовке стратегий развития. Генерирующим и угольным компаниям рекомендовано скоординировать свои программы развития с министерствами и ведомствами, чтобы учесть модернизацию угольных ТЭС для использования обогащенного угля в качестве основного топлива.

– Что мешает выполнению этой задачи?

– Общественность, экспертное сообщество опасаются поддерживать развитие угольной генерации из экологических и экономических соображений.

Сейчас угольный киловатт-час дороже газового, поскольку цена угля ниже цены газа в условном топливе примерно в полтора раза, а для достижения конкурентоспособности угля это ценовое соотношение должно быть минимум два-три, поскольку суммарные затраты угольных ТЭС значительно выше. Так, в европейской части России себестоимость производства электроэнергии угольной генерацией составляет примерно 1,6 рубля за киловатт-час, а газовой генерацией – примерно 1,1.

Введение же механизма net-back, обеспечивающего равную доходность поставок газа на внешний и внутренний рынки и, соответственно, повышающего конкурентоспособность угля, постоянно откладывается, в настоящее время – на перспективу после 2021 года.

Далее, для успешного развития угольной генерации необходимо обеспечить гарантированные поставки проектного угольного топлива на ТЭС России, а также улучшить координацию грузоперевозок, конкуренцию операторов и снизить вагонную составляющую стоимости железнодорожных перевозок угля на ТЭС, которая резко выросла после реформы ОАО «РЖД» и приватизации вагонного парка.

Еще одним барьером на пути развития угольной генерации является низкий уровень утилизации золошлаковых отходов. Для того чтобы развернуть общественное мнение в сторону угольной генерации, необходимо убедить общество в том, что твердотопливная энергетика на новых технологиях не будет продуцировать отходы, а способна их утилизировать с получением энергии и продуктов углехимии с высокой добавленной стоимостью.

Необходимо разработать и утвердить на государственном уровне эффективную стратегию развития угольной генерации России на базе современных «чистых» угольных технологий и энерготехнологических комплексов в рамках Государственной программы развития электроэнергетики России с учетом возможного наращивания потенциала совместного взаимодействия со странами СНГ и Прибалтики в сфере ТЭКа.

Увеличение потребления низкокачественных углей и отходов угольного производства должно быть обращено в преимущество угольной генерации. Твердотопливная энергетика на основе экологически «чистых» технологий может стать «фабрикой» по утилизации некондиционного сырья, промышленных и бытовых отходов.

Необходимо перейти к комбинированному безотходному производству энергии и высокоценных продуктов углехимии: полигенерационный цикл в рамках энерготехнологических комплексов производства электрической и тепловой энергии и продуктов углехимии с высокой добавленной стоимостью (коксовая продукция, углеродные сорбенты, брикетированное топливо, СЖТ, метанол, удобрения, полиметаллоконцентраты, строительные материалы, дефицитные попутные газы (азот, жидкий аргон, кислород) и др.).

– Как работает стратегия поддержки угольных инноваций на практике?

– Сегодня инновационное развитие угольной энергетики активно поддерживается правительством России через три основных инструмента. Во‑первых, это технологические платформы, в том числе «Экологически чистая тепловая энергетика высокой эффективности» (координатор – ВТИ) и «Малая распределенная энергетика» (координатор – ЗАО «АПБЭ»). Во-вторых, программы инновационного развития генерирующих компаний, включающие проекты внедрения «чистых» угольных технологий (координаторы – «Интер РАО ЕЭС», «Газпром энергохолдинг», «РАО ЭС Востока»). И наконец, инновационные территориальные кластеры, в первую очередь – создающийся в главном угледобывающем регионе России кузбасский кластер «Комплексная переработка угля и техногенных отходов».

Стратегия по развитию кузбасского кластера включает проекты по созданию энергогенерирующих, энерготехнологических комплексов с глубокой переработкой угля на базе Менчерепского месторождения; энерготехнологического комплекса «Караканский» с глубокой переработкой угля; пятидесяти комплексов по переработке отходов углеобогащения на основе водоугольного топлива; десяти энерготехнологических комплексов малой распределенной энергетики; строительство пяти заводов по комплексной переработке техногенных отходов. Кроме того, в рамках инновационного кластера на базе технологической платформы «Малая распределенная энергетика» намечена организация Координационного центра по развитию инновационных технологий использования угля на объектах малой генерации (координаторы – ЗАО «АПБЭ» и Институт теплофизики СО РАН).

Что такое угольная электростанция? Это такое предприятие по производству электричества, где первым в цепочке по преобразованию энергии стоит уголь (каменный, бурый).

Вспомним цепочку преобразования энергии на электростанциях, работающих по циклу .

Первое в цепи стоит топливо, в нашем случае уголь. Оно обладает химической энергией, которая при сгорании в котле преобразуется в тепловую энергию пара. Ещё тепловую энергию можно назвать потенциальной. Далее потенциальная энергия пара на соплах преобразуется в кинетическую энергию. Кинетическую энергию мы назовем скоростью. Эта кинетическая энергия на выходе из сопел турбины толкает рабочие лопатки и вращает вал турбины. Здесь получается механическая энергия вращения. Вал нашей турбины жестко сцеплен с валом электрического генератора. Вот уже в электрическом генераторе механическая энергия вращения преобразуется в электрическую энергию — электричество.

У угольной электростанции есть как преимущества, так и недостатки по сравнению, например, с газовой (обычной не будем брать в расчет современные ПГУ).

Преимущества угольных электростанций:

— низкая стоимость топлива;

— сравнительная независимость от поставок топлива (есть большой угольный склад);

— и… всё.

Недостатки угольных электростанций:

— низкая маневренность — обусловлена дополнительным ограничением по выходу шлака из , если он с жидким шлакоудалением;

— высокие выбросы, по сравнению с газовыми;

— более низкий КПД по отпуску электроэнергии — здесь добавляются потери в котле и увеличение собственных электрических нужд за счет системы угольного пылеприготовления;

— больше, чем на газовых станциях затраты на , связано с тем, что добавляется абразивный износ и большее количество вспомогательных установок.

Из этого небольшого сравнения видно, что угольные электростанции проигрывают газовым. Но все же мир не отказывается от их строительства. Это связано, прежде всего с экономической точки зрения.

Возьмем, к примеру, нашу страну. У нас есть некоторые места на карте, где добывают в больших количествах уголь. Самое известное — Кузбасс (Кузнецкий угольный бассейн), она же Кемеровская область. Там довольно много электростанций, самые крупные — и , кроме них есть еще несколько поменьше. Все они работают на угле, за исключением нескольких энергоблоков, где может использоваться в качестве резервного топлива газ. В Кемеровской области такое большое количество угольных электростанций обусловлено, конечно, тем, что уголь добывают «под боком». Практически отсутствует транспортная составляющая в цене угля для электрических станций. К тому же некоторые собственники ТЭС являются также собственниками угольных предприятий. Думается понятно, почему там не строят газовые станции.


К тому же разведанные запасы угля несравнимо больше, чем разведанные запасы природного газа. Это относится уже к энергетической безопасности страны.

В развитых странах шагнули дальше. Из угля делают так называемый синтетический газ, искусственный аналог природного газа. К этому газу приспособили уже некоторые , которые могут работать в составе ПГУ. А здесь уже совсем другие КПД (выше) и вредные выбросы (ниже), по сравнению с угольным станциями, да и со старыми газовыми.

Так что можно сделать вывод: уголь, как топливо для производства электричества, человечество будет использовать всегда.

В1879 г., когда Томас Алва Эдисон изобрел лампу накаливания, началась эра электрификации. Для производства больших количеств электроэнергии требовалось дешевое и легкодоступное топливо. Этим требованиям удовлетворял каменный уголь, и первые электростанции (построенные в конце XIX в. самим Эдисоном) работали на угле.

По мере того как в стране строилось все больше и больше станций, зависимость от угля возрастала. Начиная с первой мировой войны примерно половина ежегодного производства электроэнергии в США приходилась на тепловые электростанции, работающие на каменном угле. В 1986 г. общая установленная мощность таких электростанций составила 289000 МВт, и они потребляли 75% всего количества (900 млн. т) добываемого в стране угля. Учитывая существующие неопределенности в отношении перспектив развития ядерной энергетики и роста добычи нефти и природного газа, можно предположить, что к концу века тепловые станции на угольном топливе будут производить до 70% всей вырабатываемой в стране электроэнергии.

Однако, несмотря на то что уголь долгое время был и еще многие годы будет основным источником получения электроэнергии (в США на его долю приходится около 80% запасов всех видов природных топлив), он никогда не был оптимальным топливом для электростанций. Удельное содержание энергии на единицу веса (т. е. теплотворная способность) у угля ниже, чем у нефти или природного газа. Его труднее транспортировать, и, кроме того, сжигание угля вызывает целый ряд нежелательных экологических последствий, в частности выпадение кислотных дождей. С конца 60-х годов привлекательность тепловых станций на угле резко пошла на убыль в связи с ужесточением требований к загрязнению среды газообразными и твердыми выбросами в виде золы и шлаков. Расходы на решение этих экологических проблем наряду с возрастающей стоимостью строительства таких сложных объектов, какими являются тепловые электростанции, сделали менее благоприятными перспективы их развития с чисто экономической точки зрения.

Однако, если изменить технологическую базу тепловых станций на угольном топливе, их былая привлекательность может возродиться. Некоторые из этих изменений носят эволюционный характер и нацелены главным образом на увеличение мощности существующих установок. Вместе с тем разрабатываются совершенно новые процессы безотходного сжигания угля, т. е. с минимальным ущербом для окружающей среды. Внедрение новых технологических процессов направлено на то, чтобы будущие тепловые электростанции на угольном топливе поддавались эффективному контролю на степень загрязнения ими окружающей среды, обладали гибкостью с точки зрения возможности использования различных видов угля и не требовали больших сроков строительства.

Для того чтобы оценить значение достижений в технологии сжигания угля, рассмотрим кратко работу обычной тепловой электростанции на угольном топливе. Уголь сжигается в топке парового котла, представляющего собой огромную камеру с трубами внутри, в которых вода превращается в пар. Перед подачей в топку уголь измельчается в пыль, за счет чего достигается почти такая же полнота сгорания, как и при сжигании горючих газов. Крупный паровой котел потребляет ежечасно в среднем 500 т пылевидного угля и генерирует 2,9 млн. кг пара, что достаточно для производства 1 млн. квт-ч электрической энергии. За то же время котел выбрасывает в атмосферу около 100000 м3 газов.
Генерированный пар проходит через пароперегреватель, где его темпе¬ратура и давление увеличиваются, и затем поступает в турбину высокого давления. Механическая энергия вращения турбины преобразуется электрогенератором в электрическую энергию. Для того чтобы получить более высокий кпд преобразования энергии, пар из турбины обычно возвращается в котел для вторичного перегрева и затем приводит в движение одну или две турбины низкого давления и только после этого конденсируется путем охлаждения; конденсат возвращается в цикл котла.

Оборудование тепловой электростанции включает механизмы топливоподачи, котлы, турбины, генераторы, а также сложные системы охлаждения, очистки дымовых газов и удаления золы. Все эти основные и вспомогательные системы рассчитываются так, чтобы работать с высокой надежностью в течение 40 или более лет при нагрузках, которые могут меняться от 20% установленной мощности станции до максимальной. Капитальные затраты на оборудование типичной тепловой электростанции мощностью 1000 МВт, как правило, превышают 1 млрд. долл.

Эффективность, с которой тепло, освобожденное при сжигании угля, может быть превращено в электричество, до 1900 г. составляла лишь 5%, но к 1967 г. достигла 40%. Другими словами, за период около 70 лет удельное потребление угля на единицу производимой электрической энергии сократилось в восемь раз. Соответственно происходило и снижение стоимости 1 кВт установленной мощности тепловых электростанций: если в 1920 г. она составляла 350 долл. (в ценах 1967 г.), то в 1967 г. снизилась до 130 долл. Цена отпускаемой электроэнергии также упала за тот же период с 25 центов до 2 центов за 1 кВт-чае.

Однако начиная с 60-х годов темпы прогресса стали падать. Эта тенденция, по-видимому, объясняется тем, что традиционные тепловые электростанции достигли предела своего совершенства, определяемого законами термодинамики и свойствами материалов, из которых изготавливаются котлы и турбины. С начала 70-х годов эти технические факторы усугубились новыми экономическими и организационными причинами. В частности, резко возросли капитальные затраты, темпы роста спроса на электроэнергию замедлились, ужесточились требования к защите окружающей среды от вредных выбросов и удлинились сроки реализации проектов строительства электростанций. В результате стоимость производства электроэнергии из угля, имевшая многолетнюю тенденцию к снижению, резко возросла. Действительно, 1 кВт электроэнергии, производимой новыми тепловыми электростанциями, стоит теперь больше, чем в 1920 г. (в сопоставимых ценах).

В последние 20 лет на стоимость тепловых электростанций на угольном топливе наибольшее влияние оказывали ужесточившиеся требования к удалению газообразных,
жидких и твердых отходов. На системы газоочистки и золоудаления современных тепловых электростанций теперь приходится 40% капитальных затрат и 35% эксплуатационных расходов. С технической и экономической точек зрения наиболее значительным элементом системы контроля выбросов является установка для де-сульфуризации дымовых газов, часто называемая системой мокрого (скрубберного) пылеулавливания. Мокрый пылеуловитель (скруббер) задерживает окислы серы, являющиеся основным загрязняющим веществом, образующимся при сгорании угля.

Идея мокрого пылеулавливания проста, но на практике оказывается трудно осуществимой и дорогостоящей. Щелочное вещество, обычно известь или известняк, смешивается с водой, и раствор распыляется в потоке дымовых газов. Содержащиеся в дымовых газах окислы серы абсорбируются частицами щелочи и выпадают из раствора в виде инертного сульфита или сульфата кальция (гипса). Гипс может быть легко удален или, если он достаточно чист, может найти сбыт как строительный материал. В более сложных и дорогих скрубберных системах гипсовый осадок может превращаться в серную кислоту или элементарную серу - более ценные химические продукты. С 1978 г. установка скрубберов является обязательной на всех строящихся тепловых электростанциях на пылеугольном топливе. В результате этого в энерге¬тической промышленности США сейчас больше скрубберных установок, чем во всем остальном мире.
Стоимость скрубберной системы на новых станциях обычно составляет 150-200 долл. на 1 кВт установленной мощности. Установка скрубберов на действующих станциях, первоначально спроектированных без мокрой газоочистки, обходится на 10-40% дороже, чем на новых станциях. Эксплуатационные расходы на скрубберы довольно высоки независимо от того, установлены они на старых или новых станциях. В скрубберах образуется огромное количество гипсового шлама, который необходимо выдерживать в отстойных прудах или удалять в отвалы, что создает новую экологическую проблему. Например, тепловая электростанция мощностью 1000 МВт, работающая на каменном угле, содержащем 3% серы, производит в год столько шлама, что им можно покрыть площадь в 1 км2 слоем толщиной около 1 м.
Кроме того, системы мокрой газоочистки потребляют много воды (на станции мощностью 1000 МВт расход воды составляет около 3800 л/мин), а их оборудование и трубопроводы часто подвержены засорению и коррозии. Эти факторы увеличивают эксплуатационные расходы и снижают общую надежность систем. Наконец, в скрубберных системах расходуется от 3 до 8% вырабатываемой станцией энергии на привод насосов и дымососов и на подогрев дымовых газов после газоочистки, что необходимо для предотвращения конденсации и коррозии в дымовых трубах.
Широкое распространение скрубберов в американской энергетике не было ни простым, ни дешевым. Первые скрубберные установки были значительно менее надежными, чем остальное оборудование станций, поэтому компоненты скрубберных систем проектировались с большим запасом прочности и надежности. Некоторые из трудностей, связанные с установкой и эксплуатацией скрубберов, могут быть объяснены тем фак том, что промышленное применение технологии скрубберной очистки было начато преждевременно. Только теперь, после 25-летнего опыта, надежность скрубберных систем достигла приемлемого уровня.
 Стоимость тепловых станций на угольном топливе возросла не только из-за обязательного наличия систем контроля выбросов, но также и потому, что стоимость строительства сама по себе резко подскочила вверх. Даже с учетом инфляции удельная стоимость установленной мощности тепловых станций на угольном топливе сейчас в три раза выше, чем в 1970 г. За прошедшие 15 лет «эффект масштаба», т. е. выгода от строительства крупных электростанций, был сведен на нет значительным удорожанием строительства. Частично это удорожание отражает высокую стоимость финансирования долгосрочных объектов капитального строительства.

Какое влияние имеет задержка реализации проекта, можно видеть на примере японских энергетических компаний. Японские фирмы обычно более расторопны, чем их американские коллеги, в решении организационно-технических и финансовых проблем, которые часто задерживают ввод в эксплуатацию крупных строительных объектов. В Японии электростанция может быть построена и пущена в действие за 30-40 месяцев, тогда как в США для станции такой же мощности обычно требуется 50-60 месяцев. При таких больших сроках реализации проектов стоимость новой строящейся станции (и, следовательно, стоимость замороженного капитала) оказывается сравнимой с основным капиталом многих энергетических компаний США.

Поэтому энергетические компании ищут пути снижения стоимости строительства новых электрогенерирующих установок, в частности применяя модульные установки меньшей мощности, которые можно быстро транспортировать и устанавливать на существующей станции для удовлетворения растущей потребности. Такие установки могут быть пущены в эксплуатацию в более короткие сроки и поэтому окупаются быстрее, даже если коэффициент окупаемости капиталовложений остается постоянным. Установка новых модулей только в тех случаях, когда требуется увеличение мощности системы, может дать чистую экономию до 200 долл. на 1 кВт, несмотря на то что при применении маломощных установок теряются выгоды от «эффекта масштаба».
  В качестве альтернативы строительству новых электрогенерирующих объектов энергетические компании также практиковали реконструкцию действующих старых электростанций для улучшения их рабочих характеристик и продления срока службы. Эта стратегия, естественно, требует меньших капитальных затрат, чем строительство новых станций. Такая тенденция оправдывает себя и потому, что электростанции, построенные около 30 лет назад, еще не устарели морально. В некоторых случаях они работают даже с более высоким кпд, так как не оснащены скрубберами. Старые электростанции приобретают все больший удельный вес в энергетике страны. В 1970 г. только 20 электрогенерирующих объектов в США имели возраст более 30 лет. К концу века 30 лет будет средним воз¬растом тепловых электростанций на угольном топливе.

Энергетические компании также ищут пути снижения эксплуатационных расходов на станциях. Для предотвращения потерь энергии необходимо обеспечить своевременное предупреждение об ухудшении рабочих характеристик наиболее важных участков объекта. Поэтому непрерывное наблюдение за состоянием узлов и систем становится важной составной частью эксплуатационной службы. Такой непрерывный контроль естественных процессов износа, коррозии и эрозии позволяет операторам станции принять своевременные меры и предупредить аварийный выход из строя энергетических установок. Значимость таких мер может быть правильно оценена, если учесть, например, что вынужденный простой станции на угольном топливе мощностью 1000 МВт может принести энергетической компании убытки в 1 млн. долл. в день, главным образом потому, что невыработанная энергия должна быть компенсирована путем энергоснабжения из более дорогих источников.

Рост удельных расходов на транспортировку и обработку угля и на шлакоудаление сделал важным фактором и качество угля (определяемое содержанием влаги, серы и других минералов), определяющее рабочие характеристики и экономику тепловых электростанций. Хотя низкосортный уголь может стоить дешевле высокосортного, его расход на производство того же количества электрической энергии значительно больше. Затраты на перевозку большего объема низкосортного угля могут перекрыть выгоду, обусловленную его более низкой ценой. Кроме того, низкосортный уголь дает обычно больше отходов, чем высокосортный, и, следовательно, необходимы большие затраты на шлакоудаление. Наконец, состав низкосортных углей подвержен большим колебаниям, что затрудняет «настройку» топливной системы станции на работу с максимально возможным кпд; в этом случае система должна быть отрегулирована так, чтобы она могла работать на угле наихудшего ожидаемого качества.
  На действующих электростанциях качество угля может быть улучшено или по крайней мере стабилизировано путем удаления перед сжиганием некоторых примесей, например серосодержащих минералов. В очистных установках измельченный «грязный» уголь отделяется от примесей многими способами, использующими различия в удельном весе или других физических характеристиках угля и примесей.

Несмотря на указанные мероприятия по улучшению рабочих характеристик действующих тепловых электростанций на угольном топливе, в США к концу столетия нужно будет ввести в строй дополнительно 150000 МВт энергетических мощностей, если спрос на электроэнергию будет расти с ожидаемым темпом 2,3% в год. Для сохранения конкурентоспособности угля на постоянно расширяющемся энергетическом рынке энергетическим компаниям придется принять на вооружение новые прогрессивные способы сжигания угля, которые являются более эффективными, чем традиционные, в трех ключевых аспектах: меньшее загрязнение окружающей среды, сокращение сроков строительства электростанций и улучшение их рабочих и эксплуатационных характеристик.

  СЖИГАНИЕ УГЛЯ В ПСЕВДООЖИЖЕННОМ СЛОЕ уменьшает потребность во вспомогательных установках по очистке выбросов электростанции.
  Псевдоожиженныи слой смеси угля и известняка создается в топке котла воздушным потоком, в котором твердые частицы перемешиваются и находятся во взвешенном состоянии, т. е. ведут себя так же, как в кипящей жидкости.
  Турбулентное перемешивание обеспечивает полноту сгорания угля; при этом частицы известняка реагируют с окислами серы и улавливают около 90% этих окислов. Поскольку нагревательные грубы котла непосредственно касаются кипящего слоя топлива, генерация пара происходит с большей эффективностью, чем в обычных паровых котлах, работающих на измельченном угле.
  Кроме того, температура горящего угля в кипящем слое ниже, что предотвращает плавление котельного шлака и уменьшает образование окислов азота.
  ГАЗИФИКАЦИЯ УГЛЯ может быть осуществлена нагреванием смеси угля и воды в атмосфере кислорода. Продуктом процесса является газ, состоящий в основном из окиси углерода и водорода. После того как газ будет охлажден, очищен от твердых частиц и освобожден от серы, его мож- но использовать как топливо для газовых турбин, а затем для производства водяного пара для паровой турбины (комбинированный цикл).
  Станция с комбинированным циклом выбрасывает в атмосферу меньше загрязняющих веществ, чем обычная тепловая станция на угле.

В настоящее время разрабатывается более десятка способов сжигания угля с повышенным кпд и меньшим ущербом для окружающей среды. Наиболее перспективными среди них являются сжигание в псевдоожиженном слое и газификация угля. Сжигание по первому способу производится в топке парового котла, которая устроена так, что измельченный уголь в смеси с частицами известняка поддерживается над решеткой топки во взвешенном («псевдо-ожиженном») состоянии мощным восходящим потоком воздуха. Взвешенные частицы ведут себя в сущности так же, как и в кипящей жидкости, т. е. находятся в турбулентном движении, что обеспечивает высокую эффективность процесса горения. Водяные трубы такого котла находятся в непосредственном контакте с «кипящим слоем» горящего топлива, в результате чего большая доля тепла передается теплопроводностью, что значительно более эффективно, чем радиационный и конвективный перенос тепла в обычном паровом котле.

Котел с топкой, где уголь сжигается в псевдоожиженном слое, имеет большую площадь теплопередающих поверхностей труб, чем обычный котел, работающий на измельченном в пыль угле, что позволяет снизить температуру в топке и тем самым уменьшить образование окислов азота. (Если температура в обычном котле может быть выше 1650 °С, то в котле с сжиганием в псевдоожиженном слое она находится в пределах 780-870 °С.) Более того, известняк, примешанный к углю, связывает 90 или более процентов серы, освободившейся из угля при горении, так как более низкая рабочая температура способствует прохождению реакции между серой и известняком с образованием сульфита или сульфата кальция. Таким образом вредные для окружающей среды вещества, образующиеся при сжигании угля, нейтрализуются на месте образования, т. е. в топке.
  Кроме того, котел с сжиганием в псевдоожиженном слое по своему устройству и принципу работы менее чувствителен к колебаниям качества угля. В топке обычного котла, работающего на пылевидном угле, образуется огромное количество расплавленного шлака, который часто забивает теплопередающие поверхности и тем самым снижает кпд и надежность котла. В котле с сжиганием в псевдоожиженном слое уголь сгорает при температуре ниже точки плавления шлака и поэтому проблема засорения поверхностей нагрева шлаком даже не возникает. Такие котлы могут работать на угле более низкого качества, что в некоторых случаях позволяет существенно снизить эксплуатационные расходы.
  Способ сжигания в псевдоожиженном слое легко реализуется в котлах модульной конструкции с небольшой паропроизводительностью. По некоторым оценкам капиталовложения на тепловую электростанцию с компактными котлами, работающими по принципу псевдоожиженного слоя, могут быть на 10-20% ниже капиталовложений на тепловую станцию традиционного типа такой же мощности. Экономия достигается за счет сокращения времени строительства. Кроме того, мощность такой станции можно легко нарастить при увеличении электрической нагрузки, что важно для тех случаев, когда ее рост в будущем заранее неизвестен. Упрощается и проблема планирования, так как такие компактные установки можно быстро смонтировать, как только возникнет необходимость увеличения выработки электроэнергии.
  Котлы со сжиганием в псевдоожиженном слое могут также включаться в схему существующих электростанций, когда необходимо быстро увеличить генерируемую мощность. Например, энергетическая компания Northern States Power переделала один из пылеугольных котлов на станции в шт. Миннесота в котел с псевдоожиженным слоем. Переделка осуществлялась с целью увеличения мощности электростанции на 40%, снижения требований к качеству топива (котел может работать даже на местных отходах), более тщательной очистки выбросов и удлинения срока службы станции до 40 лет.
  За прошедшие 15 лет масштабы применения технологии, используемой на тепловых электростанциях, оснащенных исключительно котлами со сжиганием в псевдоожиженном слое, расширились от мелких экспериментальных и полупромышленных установок до крупных «демонстрационных» станций. Такая станция с общей мощностью 160 МВт строится совместно компаниями Tennessee Valley Authority, Duke Power и Commonwealth of Kentucky; фирма Colorado-Ute Electric Association, Inc. пустила в эксплуатацию электрогенерирующую установку мощностью 110 МВт с котлами со сжиганием в псевдоожиженном слое. В случае успеха этих двух проектов, а также проекта компании Northern States Power, совместного предприятия частного сектора с общим капиталом около 400 млн. долл., экономический риск, связанный с применением котлов со сжиганием в псевдоожиженном слое в энергетической промышленности будет значительно уменьшен.
Другим способом, который, правда, уже существовал в более простом виде еще в середине XIX в., является газификация каменного угля с получением «чисто горящего» газа. Такой газ пригоден для освещения и отопления и широко использовался в США до второй мировой войны, пока не был вытеснен природным газом.
Первоначально газификация угля привлекла внимание энергетических компаний, которые надеялись с помощью этого способа получить сгорающее без отходов топливо и за счет этого избавиться от скрубберной очистки. Теперь стало очевидно, что газификация угля имеет и более важное преимущество: горячие продукты сгорания генераторного газа можно непосредственно использовать для привода газовых турбин. В свою очередь отработанное тепло продуктов сгорания после газовой турбины может быть утилизировано с целью получения пара для привода паровой турбины. Такое совместное использование газовых и паровых турбин, называемое комбинированным циклом, является ныне одним из самых эффективных способов производства электрической энергии.
Газ, полученный газификацией каменного угля и освобожденный от серы и твердых частиц, является прекрасным топливом для газовых турбин и, как и природный газ, сгорает почти без отходов. Высокий кпд комбинированного цикла компенсирует неизбежные потери, связанные с превращением угля в газ. Более того, станция с комбинированным циклом потребляет значительно меньше воды, так как две трети мощности развивает газовая турбина, которая не нуждается в воде в отличие от паровой турбины.
Жизнеспособность электрических станций с комбинированным циклом, работающих на принципе газификации угля, была доказана опытом эксплуатации станции "Cool Water" фир¬мы Southern California Edison. Эта станция мощностью около 100 МВт была введена в эксплуатацию в мае 1984 г. Она может работать на разных сортах угля. Выбросы станции по чистоте не отличаются от выбросов соседней станции, работающей на природном газе. Содержание окислов серы в уходящих газах поддерживается на уровне значительно ниже установленной нормы с помощью вспомогательной системы улавливания серы, которая удаляет почти всю серу, содержащуюся в исходном топливе, и производит чистую серу, используемую в промышленных целях. Образование окислов азота предотвращается добавкой к газу воды перед сжиганием, что снижает температуру горения газа. Более того, остающийся в газогенераторе остаток несгоревшего угля подвергается переплавке и превращается в инертный стекловидный материал, который после охлаждения отвечает требованиям, предъявляемым в штате Калифорния к твердым отходам.
Помимо более высокого кпд и меньшего загрязнения окружающей среды станции с комбинированным циклом имеют еще одно преимущество: они могут сооружаться в несколько очередей, так что установленная мощность наращивается блоками. Такая гибкость строительства уменьшает риск чрезмерных или, наоборот, недостаточных капиталовложений, связанный с неопределенностью роста спроса на электроэнергию. Например, первая очередь установленной мощности может работать на газовых турбинах, а в качестве топлива использовать не уголь, а нефть или природный газ, если текущие цены на эти продукты низки. Затем, по мере роста спроса на электроэнергию, дополнительно вводятся в строй котел-утилизатор и паровая турбина, что увеличит не только мощность, но и кпд станции. Впоследствии, когда спрос на электроэнергию вновь увеличится, на станции можно будет построить установку для газификации угля.
Роль тепловых электростанций на угольном топливе является ключевой темой, когда речь идет о сохранности природных ресурсов, защите окружающей среды и путях развития экономики. Эти аспекты рассматриваемой проблемы не обязательно являются конфликтующими. Опыт применения новых технологических процессов сжигания угля показывает, что они могут успешно и одновременно решать проблемы и охраны окружающей среды, и снижения стоимости электроэнергии. Этот принцип был учтен в совместном американо-канадском докладе о кислотных дождях, опубликованном в прошлом году. Руководствуясь содержащимися в докладе предложениями, конгресс США в настоящее время рассматривает возможность учреждения генеральной национальной инициативы по демонстрации и применению «чистых» процессов сжигания угля. Эта инициатива, которая объединит частный капитал с федеральными капиталовложениями, нацелена на широкое промышленное применение в 90-е годы новых процессов сжигания угля, включая котлы с сжиганием топлива в кипящем слое и газогенераторы. Однако даже при широком применении новых процессов сжигания угля в ближайшем будущем растущий спрос на электроэнергию не сможет быть удовлетворен без целого комплекса согласованных мероприятий по консервации электроэнергии, регулированию ее потребления и повышению производительности существующих тепловых электростанций, работающих на традиционных принципах. Постоянно стоящие на повестке дня экономические и экологические проблемы, вероятно, приведут к появлению совершенно новых технологических разработок, принципиально отличающихся от тех, что были здесь описаны. В перспективе тепловые электростанции на угольном топливе могут превратиться в комплексные предприятия по переработке природных ресурсов. Такие предприятия будут перерабатывать местные виды топлива и другие природные ресурсы и производить электроэнергию, тепло и различные продукты с учетом потребностей местной экономики. Кроме котлов с сжиганием в кипящем слое и установок для газификации угля такие предприятия будут оснащены электронными системами технической диагностики и автоматизированными системами управления и, кроме того, полезно использовать большинство побочных продуктов сжигания угля.

Таким образом, возможности улучшения экономических и экологических факторов производства электроэнергии на базе каменного угля очень широкие. Своевременное использование этих возможностей зависит, однако, от того, сможет ли правительство проводить сбалансированную политику в отношении производства энергии и защиты окружающей среды, которая создала бы необходимые стимулы для электроэнергетической промышленности. Необходимо принять меры к тому, чтобы новые процессы сжигания угля развивались и внедрялись рационально, при сотрудничестве с энергетическими компаниями, а не так, как это было с внедрением скрубберной газоочистки. Все это можно обеспечить, если свести к минимуму затраты и риск путем хорошо продуманного проектирования, испытания и усовершенствования небольших опытных экспериментальных установок с последующим широким промышленным внедрением разрабатываемых систем.

Climate Analytics продолжает настаивать на том, что угольная энергетика в Европе должна быть ликвидирована уже к 2030 году - иначе ЕС не выполнит целей Парижского соглашения по климату. Но какие станции закрывать в первую очередь? Предлагается два подхода - экологический и экономический. «Кислород.ЛАЙФ» присмотрелся к крупнейшим угольным ТЭС в России, которые никто закрывать не собирается.

Закрыть за десять лет


Climate Analytics продолжает настаивать , что для достижения целей Парижского соглашения по климату странам ЕС придется закрыть практически все действующие угольные ТЭС. Энергетический сектор Европы нуждается в тотальной декарбонизации, поскольку значительная часть общего объема выбросов парниковых газов (ПГ) в ЕС формируется в угольной энергетике. Поэтому постепенный отказ от угля в этой отрасли является одним из самых рентабельных методов сокращения эмиссии ПГ, также такие действия обеспечат значительные преимущества с точки зрения качества воздуха, здоровья населения и энергетической безопасности.

Сейчас в ЕС – более 300 электростанций с действующими на них 738 энергоблоками, работающими на угольном топливе. Географически они распределены, естественно, не равномерно. Но в целом каменный уголь и лигнит (бурый уголь) обеспечивают четверть всей генерации электричества в ЕС. Самые зависимые от угля члены Евросоюза – Польша, Германия, Болгария, Чехия и Румыния. На долю Германии и Польши приходится 51% установленных угольных мощностей в ЕС и 54% выбросов ПГ от угольной энергетики во всей объединенной Европе. При этом в семи странах ЕС вообще нет угольных ТЭС.

«Дальнейшее использование угля для производства электроэнергии не совместимо с реализацией задачи резкого снижения выбросов ПГ. Поэтому ЕС необходимо разработать стратегию поэтапного отказа от угля быстрее, чем это происходит в настоящее время», - резюмирует Climate Analytics. В противном случае, совокупные объемы выбросов к 2050 году по всему ЕС вырастут на 85%. Моделирование, проведенное Climate Analytics, показало, что 25% работающих в настоящее время угольных электростанций должны быть закрыты уже к 2020 году. Еще через пять лет закрыть необходимо 72% ТЭС, а полностью избавиться от угольной энергетики к 2030 году.

Главные вопрос – как это делать? По мнению Climate Analytics, «критический вопрос – по каким критериям нужно определять, когда закрывать те или иные ТЭС? С точки зрения земной атмосферы, критерии не имеют значения, так как выбросы ПГ будут сокращаться в нужном темпе. Но с точки зрения политиков, владельцев предприятий и других заинтересованных сторон, выработка таких критериев – решающий момент в принятии решений».

Climate Analytics предлагает две возможные стратегии для полного отказа от использования угля в производстве электроэнергии. Первая – сначала закрывать те ТЭС, которые лидируют по выбросам ПГ. Вторая стратегия – закрывать станции, наименее ценные с точки зрения бизнеса. Для каждой из стратегий нарисована интересная инфографика, показывающая, как будет меняться облик ЕС в годами вслед за закрытием угольных станций. В первом случае под ударом окажутся Польша, Чехия, Болгария и Дания. Во втором – также Польша и Дания.

Единства нет


Climate Analytics также по всем 300 станциям проставил годы закрытия в соответствии с двумя стратегиями. Нетрудно заметить, что эти годы существенно расходятся со сроками работы этих станций в обычном режиме (т.н. BAU - businnes as usual). Например, крупнейшая в Европе станция Белхатов в Польше (мощность более 4,9 ГВт) может работать как минимум до 2055 года; тогда как ее предлагается закрыть уже к 2027 году - одинаковый срок при любом сценарии.

В целом именно пять польских ТЭС, которые могут спокойно дымит до 2060-х годов, Climate Analytics предлагает закрыть на три-четыре десятилетия раньше срока. Польшу, энергетика которой на 80% зависит от угля, такое развитие событий вряд ли устроит (напомним, эта страна даже собирается оспаривать климатические обязательства, навязанные ей ЕС, в суде). Еще пять станций из Топ-20 находятся в Великобритании; восемь - в Германии. Также в первой двадцатке на закрытие - две ТЭС в Италии.

При этом английская Fiddler"s Ferry (мощность 2 ГВт) должна быть закрыта уже в 2017 году, а остальные британские ТЭС, как и заявляло правительство этой страны - к 2025 году. То есть только в этой стране процесс может пройти относительно безболезненно. В Германии все может растянуться до 2030 года, реализация двух стратегий будет различаться в зависимости от специфики земель (там есть угледобывающие регионы). В Чехии и Болгарии угольную генерацию нужно будет свернуть уже к 2020 году - прежде всего, из-за солидных объемов выбросов.

На замену углю должны прийти ВИЭ. Снижение себестоимости генерации солнца и ветра – важный тренд, который необходимо поддерживать и развивать, считают в Climate Analytics. За счет ВИЭ можно провести трансформацию энергетики, в том числе путем создания новых рабочих мест (не только в самой отрасли, но и в производстве оборудования). Которые, в том числе, смогут занять и высвобождаемые из угольной энергетики кадры.

Впрочем, в Climate Analytics признают, что в Европе нет единства в отношении угля. В то время как некоторые страны значительно сократили добычу и заявили о полном отказе от этого вида топлива в ближайшие 10-15 лет (среди них, например, Великобритания, Финляндия и Франция), другие или строят, или планируют строить новые угольные электростанции (Польша и Греция). «Вопросам экологии в Европе уделяют большое внимание, однако быстро отказаться от угольной генерации вряд ли будет возможно. Сначала необходимо ввести в строй замещающие мощности, ведь тепло и свет нужны и населению, и экономике. Это тем более важно, что ранее принимались решения о закрытии ряда атомных электростанций в Европе. Возникнут социальные проблемы, потребуется переобучить часть сотрудников самих станций, будет сокращено значительное количество рабочих мест в самых разных отраслях, что, безусловно, увеличит напряженность в обществе. Скажется закрытие угольных электростанций и на бюджетах, так как не станет значительной группы налогоплательщиков, а операционные показатели тех компаний, кто ранее им поставлял товары и услуги, существенно уменьшатся. Если какое-то решение и возможно, то заключаться оно может в растянутом по времени отказе от угольной генерации, с одновременным продолжением работы по совершенствованию технологий с целью уменьшения выбросов от сжигания угля, улучшения экологической ситуации на угольных электростанциях», - говорит по этому поводу Дмитрий Баранов , ведущий эксперт УК «Финам Менеджмент».


Top-20 угольных ТЭС Европы, которые, по мнению Climate Analytics, нужно будет закрыть

А что у нас?


Доля тепловой генерации в структуре выработки электроэнергии в России составляет более 64%, в структуре установленной мощности станций ЕЭС – более 67%. Однако в ТОП-10 крупнейших ТЭС страны только две станции работают на угле – Рефтинская и Рязанская; в основном же тепловая энергетика в России – газовая. «В России одна из лучших структур топливного баланса в мире. Мы используем всего 15% угля для производства энергии. В среднем по миру этот показатель составляет 30-35%. В Китае – 72%, в США и ФРГ – 40%. Задачу сократить долю не углеродных источников до 30% активно решают и в Европе. В России эта программа, фактически, уже реализована», - заявил глава Минэнерго РФ Александр Новак , выступая в конце февраля на панельной сессии «Зеленая экономика как вектор развития» в рамках Российского Инвестиционного форума-2017 в Сочи.

Доля атомной энергетики в общем объеме энергобаланса страны – 16-17%, гидрогенерации – 18%, на газ приходится порядка 40%. По данным Института энергетических исследований РАН, уголь в производстве электроэнергии давно и активно вытесняется газом и атомом, причем быстрее всего - в европейской части России. Крупнейшие угольные ТЭС расположены, тем не менее, в центре и на Урале. Но если посмотреть на картину в энергетике в разрезе регионов, а не отдельных станций, то картинка будет другая: наиболее «угольные» регионы – в Сибири и на Дальнем Востоке. Структура территориальных энергобалансов зависит от уровня газификации: в европейской части России он высокий, а в Восточной Сибири и далее – низкий. Уголь в качестве топлива, как правило, используется на городских ТЭЦ, где вырабатывается не только электричество, но и тепло. Поэтому генерация в больших городах (вроде Красноярска) полностью основана на угольном топливе. В целом на долю тепловых станций только в ОЭС Сибири в настоящее время приходится 60% выработки электроэнергии - это порядка 25 ГВт «угольных»мощностей.

Что касается ВИЭ, то сейчас на долю таких источников в энергобалансе РФ приходится символические 0,2%. «Планируем выйти на 3% - до 6 тысяч МВт за счет различных механизмов поддержки», - дал прогноз Новак. В компании «Россети» дают более оптимистичные прогнозы : установленная мощность ВИЭ к 2030 году в России может вырасти на 10 ГВт. Тем не менее, глобальной перестройки энергобаланса в нашей стране не предвидится. «По прогнозам, к 2050 году в мире будет насчитываться порядка 10 миллиардов человек. Уже сегодня порядка 2 миллиардов не имеют доступа к источникам энергии. Представьте, какая будет потребность человечества в энергии через 33 года, и как должны развиться ВИЭ, чтобы обеспечить весь спрос», - так доказывает жизнеспособность традиционной энергетики Александр Новак.

«Речь об «отказе от угля» в России точно не идет, тем более что, согласно Энергостратегии до 2035 года, запланировано увеличение доли угля в энергобалансе страны, - напоминает Дмитрий Баранов из УК «Финам Менеджмент». - Наряду с нефтью и газом, уголь является одним из важнейших полезных ископаемых на планете, и Россия, как одна из крупнейших стран в мире по его запасам и добыче, просто обязана уделять должное внимание развитию этой отрасли. Еще в 2014 году на заседании правительства РФ Новак представил программу развития угольной промышленности России до 2030 года. В ней основной упор сделан на создание новых центров угледобычи, в первую очередь, в Сибири и на Дальнем Востоке, совершенствование научно-технического потенциала в отрасли, а также реализацию проектов в углехимии».

Крупнейшие ТЭС России, работающие на угольном топливе


Рефтинская ГРЭС («Энел Россия»)


Является самой крупной угольной ТЭС в России (и второй в топ-10 тепловых станций страны). Расположена в Свердловской области, в 100 км северо-восточнее Екатеринбурга и в 18 км от Асбеста.
Установленная электрическая мощность - 3800 МВт.
Установленная тепловая мощность - 350 Гкал/ч.

Обеспечивает энергоснабжение промышленных районов Свердловской, Тюменской, Пермской и Челябинской областей.
Строительство электростанции началось в 1963 году, в 1970 состоялся пуск первого энергоблока, в 1980 - последнего.

Рязанская ГРЭС (ОГК-2)


Пятая в топ-10 крупнейших тепловых станций России. Работает на угле (первая очередь) и природном газе (вторая очередь). Расположена в Новомичуринске (Рязанская область), к 80 км южнее от Рязани.
Установленная электрическая мощность (вместе с ГРЭС-24) - 3 130 МВт.
Установленная тепловая мощность - 180 Гкал/час.

Строительство началось в 1968 году. Первый энергоблок введен в эксплуатацию 1973 году, последний – 31 декабря 1981 года.

Новочеркасская ГРЭС (ОГК-2)


Расположена в микрорайоне Донской в Новочеркасске (Ростовская область),в 53 км на юго-восток от Ростова-на-Дону. Работает на газе и угле. Единственная ТЭС в России, использующая местные отходы добычи угля и углеобогащения - антрацитовый штыб.
Установленная электрическая мощность - 2229 МВт.
Установленная тепловая мощность - 75 Гкал/час.

Строительство началось в 1956 году. Первый энергоблок введен в эксплуатацию в 1965 году, последний – восьмой – в 1972 году.

Каширская ГРЭС («ИнтерРАО»)


Расположена в Кашире (Московская область).
Работает на угле и природном газе.
Установленная электрическая мощность – 1910 МВт.
Установленная тепловая мощность - 458 Гкал/ч.

Введена в эксплуатацию в 1922 году по плану ГОЭЛРО. В 1960-е годы на станции была проведена масштабная модернизация.
Пылеугольные энергоблоки №1 и №2 планируется вывести из эксплуатацию в 2019 году. К 2020 году такая же судьба ждет еще четыре энергоблока, работающих на газомазутном топливе. В работе останется только самый современный блок №3 мощностью 300 МВт.



Приморская ГРЭС (РАО «ЭС Востока»)


Расположена в Лучегорске (Приморский край).
Самая мощная ТЭС на Дальнем Востоке. Работает на угле Лучегорского угольного разреза. Обеспечивает большую часть энергопотребления Приморья.
Установленная электрическая мощность – 1467 МВт.
Установленная тепловая мощность – 237 Гкал/час.

Первый энергоблок станции был введён в эксплуатацию в 1974 году, последний в 1990-м. ГРЭС расположена практически «на борту» угольного разреза – больше нигде в России электростанция не строилась в столь непосредственной близости от источника топлива.


Троицкая ГРЭС (ОГК-2)

Расположена в Троицке (Челябинская область). Выгодно расположена в промышленном треугольнике Екатеринбург – Челябинск – Магнитогорск.
Установленная электрическая мощность – 1 400 МВт.
Установленная тепловая мощность - 515 Гкал/час.

Пуск первой очереди станции состоялся в 1960 году. Оборудование второй очереди (на 1200 МВт) было выведено из эксплуатации в 1992-2016 годы.
В 2016 году введен в эксплуатацию уникальный пылеугольный энергоблок №10 мощностью 660 МВт.

Гусиноозерская ГРЭС («ИнтерРАО»)


Расположена в Гусиноозерске (Республика Бурятия), обеспечивает электроэнергией потребителей Бурятии и соседних регионов. Основным топливом для станции является бурый уголь Окино-Ключевского разреза и Гусиноозёрского месторождения.
Установленная электрическая мощность – 1160 МВт.
Установленная тепловая мощность - 224,5 Гкал/ч.

Четыре энергоблока первой очереди введены в эксплуатацию с 1976 по 1979 годы. Ввод второй очереди начался в 1988 году запуском энергоблока №5.

Загрузка...